返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:

  • 机器人精度补偿技术与应用 廖文和,李波,田威 等 编 专业科技 文轩网
  • 新华书店正版
    • 作者: 廖文和,李波,田威,程著
    • 出版社: 科学出版社
    • 出版时间:2023-01-01 00:00:00
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    文轩网图书旗舰店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

         https://product.suning.com/0070067633/11555288247.html

     

    商品参数
    • 作者: 廖文和,李波,田威,程著
    • 出版社:科学出版社
    • 出版时间:2023-01-01 00:00:00
    • 版次:1
    • 字数:380000
    • 页数:244
    • 开本:B5
    • 装帧:平装
    • ISBN:9787030740182
    • 国别/地区:中国
    • 版权提供:科学出版社

    机器人精度补偿技术与应用

    作  者:廖文和,李波,田威 等 编
    定  价:169
    出 版 社:科学出版社
    出版日期:2023年04月01日
    页  数:
    装  帧:平装
    ISBN:9787030740182
    主编推荐

    内容简介

    本书详细地介绍了工业机器人精度补偿的基础理论和关键技术,主要内容包括:机器人运动学模型建立方法和机器人定位误差分析,机器人运动学模型标定方法,机器人非运动学标定方法,机器人很优采样点规划方法等,并进一步阐述了飞机装配自动制孔系统中工业机器人精度补偿技术的应用方法,以验证该技术的有效性。

    作者简介

    精彩内容

    目录
    Part I Theories
    Chapter 1 Introduction 3
    1.1 Background 3
    1.2 What is robot accuracy 6
    1.3 Why error compensation 8
    1.4 Early investigations and insights 9
    1.4.1 Offline calibration 10
    1.4.2 Online feedback 16
    1.5 Summary 19
    Chapter 2 Kinematic modeling 21
    2.1 Introduction 21
    2.2 Pose description and transformation 21
    2.2.1 Descriptions of position and posture 21
    2.2.2 Translation and rotation 22
    2.3 RPY angle and Euler angle 23
    2.4 Forward kinematics 26
    2.4.1 Link description and link frame 26
    2.4.2 Link transformation and forward kinematic model 27
    2.4.3 Forward kinematic model of a typical KUKA industrial robot 29
    2.5 Inverse kinematics 33
    2.5.1 Uniquely closed solution with joint constraints 34
    2.5.2 Inverse kinematic model of a typical KUKA industrial robot 35
    2.6 Error modeling 38
    2.6.1 Differential transformation 38
    2.6.2 Differential transformation of consecutive links 40
    2.6.3 Kinematic error model 42
    2.7 Summary 44
    Chapter 3 Positioning error compensation using kinematic calibration 45
    3.1 Introduction 45
    3.2 Observability-index-based random sampling method 46
    3.2.1 Observability index of robot kinematic parameters 46
    3.2.2 Selection method of sampling points 48
    3.3 Uniform-grid-based sampling method 54
    3.3.1 Optimal grid size 54
    3.3.2 Sampling point planning method 67
    3.4 Kinematic calibration considering robot flexibility error 73
    3.4.1 Robot flexibility analysis 74
    3.4.2 Establishment of robot flexibility error model 76
    3.4.3 Robot kinematic error model with flexibility error 77
    3.5 Kinematic calibration using variable parametric error 79
    3.6 Parameter identification using L-M algorithm 81
    3.7 Verification of error compensation performance 83
    3.7.1 Kinematic calibration with robot flexibility error 83
    3.7.2 Error compensation using variable parametric error 84
    3.8 Summary 91
    Chapter 4 Error-similarity-based positioning error compensation 92
    4.1 Introduction 92
    4.2 Similarity of robot positioning error 93
    4.2.1 Qualitative analysis of error similarity 93
    4.2.2 Quantitative analysis of error similarity 94
    4.2.3 Numerical simulation and discussion 96
    4.3 Error compensation based on inverse distance weighting and error similarity 100
    4.3.1 Inverse distance weighting interpolation method 101
    4.3.2 Error compensation method combined IDW with error similarity 102
    4.3.3 Numerical simulation and discussion 104
    4.4 Error compensation based on linear unbiased optimal estimation and error similarity 106
    4.4.1 Robot positioning error mapping based on error similarity 106
    4.4.2 Linear unbiased optimal estimation of robot positioning error 109
    4.4.3 Numerical simulation and discussion 112
    4.4.4 Error compensation 116
    4.5 Optimal sampling based on error similarity 116
    4.5.1 Mathematical model of optimal sampling points 117
    4.5.2 Multi-objective optimization and non-inferior solution 119
    4.5.3 Genetic algorithm and NSGA-II 121
    4.5.4 Multi-objective optimization of optimal sampling points of robots based on NSGA-II 128
    4.6 Experimental verification 131
    4.6.1 Experimental platform 131
    4.6.2 Experimental verification of positioning error similarity 133
    4.6.3 Experimental verification of error compensation based on inverse distance weighting and error similarity 141
    4.6.4 Experimental verification of error compensation based on linear unbiased optimal estimation and error similarity 145
    4.7 Summary 148
    Chapter 5 Joint space closed-loop feedback 149
    5.1 Introduction 149
    5.2 Positioning error estimation 149
    5.2.1 Error estimation model of Chebyshev polynomial 149
    5.2.2 Identification of Chebyshev coefficients 153
    5.2.3 Mapping model 154
    5.3 Effect of joint backlash on positioning error 155
    5.3.1 Variation law of joint backlash 155
    5.3.2 Multi-directional positioning accuracy variation 158
    5.4 Error compensation using feedforward and feedback loops 161
    5.5 Experimental verification and analysis 162
    5.5.1 Experimental setup 162
    5.5.2 Error estimation experiment 163
    5.5.3 Error compensation experiment 165
    5.6 Summary 167
    Chapter 6 Cartesian space closed-loop feedback 168
    6.1 Introduction 168
    6.2 Pose measurement using binocular visual sensor 168
    6.2.1 Description of frame 168
    6.2.2 Pose measurement principle based on binocular vision 170
    6.2.3 Influence of the frame FE on measurement accuracy 174
    6.2.4 Pose estimation using Kalman filtering 177
    6.3 Vision-guided control system 178
    6.4 Experimental verification 183
    6.4.1 Experimental platform 183
    6.4.2 Kalman-filtering-based estimation 184
    6.4.3 No-load experiment 185
    6.5 Summary 189
    ……

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购