本书是一部英文版的数学专著。本书由七章组成,每一章又由许多的文章组成.对等式的引用采用(C,A,E)的形式,其中C表示章的编号,A表示文章的编号,E表示文章中方程的编号.每一章中方括号里面的编号与书后的参考文献是对应的.符号i和i,分别表示关于xi和yi的偏导数.小的和长的垂直线|和|分别代表h-共变导数和v-共变导数。
1 Introduction
1.1 Historical development from Geometry to Finsler Geometry
1.1.1 Origin of Geometry
1.1.2 Euclidean and Riemannian geometryFinsler Geometry
1.2 Differentiable Manifolds
1.2.1 n-dimensional Topological manifold
1.3 Curve and Line Element
1.4 Finsler Space
1.5 Physical motivation
1.6 .Tangent Space, Indicatrix and Minkowskian Space
1.6.1 Tangent Space
1.6.2 Indicatrix
1.6.3 Minkowskian Space
1.7 Finsler connections
1.7.1 Cartan's Connection
1.7.2 Rund's Connection
1.7.3 Berwald's connection
1.7.4 Hashiguchi's connection
1.8 Special Finsler Spaces
1.8.1 Definitions of some special Finsler spaces
1.8.2 Finsler space with (a, β)-metric
1.8.3 Finsler space with (Y, β)-metric
1.9 Intrinsic fields of orthonormal frames
1.9.1 Two-dimensional Finsler space
1.9.2 Three-dimensional Finsler space
1.9.3 Four-dimensional Finsler space
2 Generalized C"-Reducible Finsler Space
2.1 Introduction
2.2 Basic concept of generalized Cv-Reducible Finsler Space offirst kind
2.3 Generalized C”-Reducible Finsler Space of type Ⅰ
2.4 Generalized C"-Reducible Finsler Space of type Ⅱ
2.5 Basic concept of generalized Cv-Reducible Finsler Space ofsecond kind
2.6 Generalized Cv-Reducible Finsler Space of type Ⅲ
2.7 Generalized Cv-Reducible Finsler Space of type Ⅳ
3 On Finsler space with generalized (a, β)-Metric
3.1 Introduction
3.2 Preliminaries
3.3 Berwald frame for Two-dimensional generalized (a, B)-Metric
3.4 Main scalar of Two-dimensional generalized (a, B)-metric
3.5 Landsberg and Berwald spaces with generalized (a, B)-Metric
3.6 Landsberg and Berwald spaces with m-generalized Kropina metric
4 On Finsler spaces with unified main scalar (LC) is of theform L2C2 =f(y)+g(x)
4.1 Introduction
4.2 The condition L2C2 = f(y) + g(x)
4.3 Landsberg and Berwald spaces satisfying the condition L2C2 –f(y)+g(x)
5 On Finsler space with h-Randers conformal change
5.1 Introduction
5.2 Cartan's connection of Fn
5.3 Some properties of h-Randers conformal change
5.4 Geodesic Spray coefficients of Fn