返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:

  • 岩土塑性力学 Yuanxue Liu,Yingren Zheng 著 专业科技 文轩网
  • 新华书店正版
    • 作者: Yuanxue Liu,Yingren Zheng著
    • 出版社: 科学出版社
    • 出版时间:2019-08-01 00:00:00
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    文轩网图书旗舰店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

         https://product.suning.com/0070067633/11555288247.html

     

    商品参数
    • 作者: Yuanxue Liu,Yingren Zheng著
    • 出版社:科学出版社
    • 出版时间:2019-08-01 00:00:00
    • 版次:1
    • 页数:250
    • 开本:16开
    • 装帧:平装
    • ISBN:9787030601827
    • 国别/地区:中国
    • 版权提供:科学出版社

    岩土塑性力学

    作  者:Yuanxue Liu,Yingren Zheng 著
    定  价:180
    出 版 社:科学出版社
    出版日期:2019年08月01日
    页  数:250
    装  帧:精装
    ISBN:9787030601827
    主编推荐

    内容简介

    本书是作者关于岩土塑性力学长期教学与科研工作成果的凝聚。力图深入浅出的阐述岩土塑性基本概念、静动力基本力学特性、非线性与经典塑性理论、岩土屈服面理论、硬化模型、流动法则与加卸载准则、主应力轴旋转计算理论,以及岩土极限分析及其近期新进展-极限有限元法。较为详细地介绍了代表性的岩土静动力本构模型。期冀读者能对岩土基本力学特性与本构模型有深入系统的认识,可以针对具体工程问题与岩土特性,选用与建立合理本构模型。

    作者简介

    精彩内容

    目录
    1 Introduction
    1.1 BasicConcept
    1.1.1 Plastic Deformation
    1.1.2 Plastic Mechanics
    1.1.3 Plastic Mechanics of Geomaterial
    1.2 The Basic Hypothesis of Plastic Mechanics of Geomaterial
    1.3 The Constitutive Model
    1.3.1 What Is Model
    1.3.2 Model in Classical Soil Mechanics
    1.4 Development History for Plastic Mechanics of Geomaterial
    References
    2 Stress and Strain and Its Basic Equations
    2.1 Continuum Model
    2.2 Stress Tensor
    2.3 Decomposition of Stress Tensor and Its Invariants
    2.3.1 Decomposition of Stress Tensor
    2.3.2 Other Representation of Stress Invariant
    2.4 Deformation and Strain
    2.5 The Invariant of Strain Tensor
    2.6 Decomposition of Strain Tensor and Its Invariants
    2.6.1 Decomposition of Strain Tensor
    2.6.2 Other Representation of Strain Invariant
    2.7 Stress Path and Strain Path
    2.7.1 Expression of Stress Path
    2.7.2 The Realization of Stress Path
    2.7.3 Total Stress Path and Effective Stress Path
    2.7.4 Strain Path
    2.8 Basic Equations of Plastic Mechanics of Geomaterial
    2.8.1 Basic Equations
    2.8.2 Boundary Condition and Initial Value
    References
    3 The Basic Mechanical Characteristics of the Geomaterial
    3.1 Pressure-Hardening
    3.2 Yield Caused by Hydrostatic Pressure
    3.3 Dilatancy
    3.4 Plastic Deformation Dependent on Stress Path
    3.5 Other Important Characteristics
    3.6 Mechanical Characteristic at Small Strain of Geomaterial
    3.7 Mechanical Difference for the Natural and Remoulded Soil
    References
    4 The Elastic Model of Geomaterial
    4.1 Nonlinear Elastic Theory
    4.1.1 Variable Elasticity Theory
    4.1.2 Hyperelastic Theory
    4.1.3 Hypoelastic Theory
    4.2 The Anisotropic Elastic Theory
    4.2.1 Isotropic Elastic Constitutive Model
    4.2.2 The Elastic Constitutive Model with Cross-Anisotropy
    4.3 The Isotropic Nonlinear Elastic Model of Geomaterial
    4.3.1 The Basic Principle of Duncan-Chang Model
    4.3.2 Two Elastic Function of Duncan-Chang Model
    4.3.3 Review of Duncan-Chang Model
    4.4 The Elastic Model with Transverse Isotropy
    4.4.1 Xiao-nan Gong Model
    4.4.2 Graham Model
    References
    5 Classical Plastic Theory
    5.1 Potential Function and Thermodynamics
    5.1.1 First Law of Thermodynamics
    5.1.2 Second Law of Thermodynamics
    5.1.3 Thermodynamics Potential and Dissipative Inequality
    5.2 Plastic Postulate
    5.2.1 Drucker's Stability Postulate
    5.2.2 Inference of Drucker's Postulate
    5.3 The Constitutive Model Based on the Classic Plastic Theory
    5.3.1 The Framework of the Classic Plastic Theory
    5.3.2 Commonly Used Models
    References
    6 The Development of the Plastic Theory of Geomaterial
    6.1 Study of Several Basic Problems in Plastic Theory of Geomaterial
    6.1.1 Proving that Drucker Postulate Is Unsuitable for Geomaterial
    6.1.2 Proving that the Classic Plastic Theory Is Unsuitable for Geomaterial
    6.1.3 Study of Several Key Problems in the Plastic Theory of Geomaterial
    6.2 Development of the Yield Surface for Geomaterial
    6.2.1 Significance of Yield Surface
    6.2.2 Yield of Geomaterial
    6.2.3 The Shear Yield Surface
    6.2.4 Volumetric Yield Criterion
    6.2.5 Yield Surface of Overconsolidated Soil
    6.2.6 Part Yield
    6.3 Hardening Laws
    6.3.1 Hardening Theory
    6.3.2 Hardening Model
    6.3.3 Isotropic Hardening
    6.3.4 Kinematic Hardening
    6.3.5 Mixed Hardening
    6.3.6 The General Form of Hardening Model
    6.4 Plastic Flow Rule
    6.4.1 Associated Flow Rule
    6.4.2 Nonassociated Flow Rule
    6.4.3 Mixed Flow Rule
    6.5 Loading-Unloading Rule
    6.5.1 Loading-Unloading Rule Based on Yield Surface
    6.5.2 Loading-Unloading Rule with Stress Type
    6.5.3 Loading-Unloading Rule with Strain Style
    References
    7 The Static Elastoplastic Model for Geomaterial
    7.1 Cam-Clay and Modified Cam-Clay Model
    7.1.1 The Concept of Critical States
    7.1.2 Cam-Clay Model
    7.1.3 Modified Cam-Clay Model
    7.1.4 Comment on Cam-Clay Model
    7.2 Lade Model
    7.2.1 Components of Constitutive Model
    7.2.2 Elastic Behavior
    7.2.3 Failure Criterion
    7.2.4 Plastic Potential and Flow Rule
    7.2.5 Yield Criterion and Work-Hardening/Softening Relation
    7.2.6 Determination of Material Parameters
    7.2.7 Model Comments
    7.3 A Unified Hardening Constitutive Model for Soils
    7.3.1 Introduction
    7.3.2 The Unified Hardening Parameter Which Has Nothing to Do with the Stress Path
    7.3.3 Unified Hardening Model for Natural Consolidation
    7.3.4 The Unified Hardening Model of the Normal
    Consolidated Soil
    7.3.5 The Stress-Strain Relationship
    7.3.6 Model Comments
    References
    8 Generalized Plastic Mechanics Considering the Rotation of Principal Axis of Stress
    8.1 Decomposition of the Stress Increment.
    8.1.1 Decomposition of Two-Dimensional Stress Increment.
    8.1.2 Decomposition of Three-Dimensional Stress Increment.
    8.2 Generalized Plastic Potential Theory Considering Rotation of Principal Stress Axis
    8.3 Complete Stress Increment Expression of Elastoplastic Stress-Strain Relationship for Geomaterial
    8.4 Plastic Deformation Caused by Coaxial Stress Increment
    8.5 Plastic Deformation Caused by the Rotational Increment
    8.5.1 Plastic Deformation Caused by Stress Increment
    8.5.2 Plastic Deformation Caused by Rotational Stress Increment dCir2 and drir
    8.6 Elastoplastic Stress-Strain Relations Considering Rotation of Principal Stress Axis
    8.6.1 Elastic Compliance Matrix
    8.6.2 Coaxial Plastic Compliance Matrix
    8.6.3 Rotating Plastic Compliance Matrix
    References
    9 The Dynamic Constitutive Model of Geomaterial
    9.1 Basic Characteristics of Dynamic Stress -Strain Relationship of Geomaterial
    9.2 Empirical Model for Dynamic Stress-Strain Relationship
    9.3 Equivalent Dynamic Linear Viscoelastic Model of Soil.
    9.3.1 Viscoelastic Model
    9.3.2 Parameter for Viscoelastic Model
    9.4 Viscoelastoplastic Dynamic Constitutive Model of Geomaterial
    9.4.1 Framework for Viscoelastic Plasticity Model
    9.4.2 The Computation of Viscoelastic Part
    9.4.3 The Computation of Elastoplastic Part
    9.4.4 The Computation of Total Part
    9.5 Viscoplastic Cap Models
    9.5.1 The Perzyna-Type Viscoplastic Cap Model
    9.5.2 Solution Algorithms
    9.5.3 The Duvant-Lions Type Viscoplastic Cap Model
    9.5.4 Illustration Example
    References
    10 Limit Analysis for Geotechnical Engineering
    10.10 verview
    10.2 The Basic Equations for Limit Analysis
    10.3 The Characteristic Line Method in Limit Analysis
    10.3.1 Slip Line of Stress
    10.3.2 Prandtl Solution of Stress Characteristic Line for Ultimate Load of a Half-Infinite Plane Body
    10.3.3 Velocity Slip Line Field for Plane Strain Problem
    10.4 Principle of Limit Analysis and Approximate Method
    10.4.1 Limit Analysis Theorem
    10.4.2 Example of Limit Analysis Principle
    10.5 Numerical Limit Analysis
    10.5.1 The Basic Principle of FEM Limit Analysis
    10.5.2 Definition of Safety Factor
    10.5.3 Criterion for Limit State
    10.5.4 Example for the Calculation of Slope Safety Factor
    References

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购