文轩网图书旗舰店
  • 扫码下单

  • 实分析教程第2版 (美)J.N.McDonald(J.N.麦克唐纳) 著 文教 文轩网
  • 新华书店正版
    • 作者: (美)J.N.McDonald(J.N.麦克唐纳)著
    • 出版社: 世界图书出版公司
    • 出版时间:2013-04-01 00:00:00
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    店铺装修中

    商家:
    文轩网图书旗舰店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    文轩网图书旗舰店

  •      https://product.suning.com/0070067633/11555288247.html

     

    商品参数
    • 作者: (美)J.N.McDonald(J.N.麦克唐纳)著
    • 出版社:世界图书出版公司
    • 出版时间:2013-04-01 00:00:00
    • 版次:1
    • 印次:1
    • 印刷时间:2013-01-01
    • 开本:其他
    • 装帧:平装
    • ISBN:9787510052637
    • 国别/地区:中国
    • 版权提供:世界图书出版公司

    实分析教程第2版

    作  者:(美)J.N.McDonald(J.N.麦克唐纳) 著
    定  价:139
    出 版 社:世界图书出版公司
    出版日期:2013年04月01日
    页  数:0
    装  帧:简装
    ISBN:9787510052637
    主编推荐

    内容简介

    数学

    作者简介

    精彩内容

    目录
    Preface
    PART ONE Set Theory,Real Numbers,and Calculus
    1 SET THEORY
    Biography: Georg Cantor
    1.1 Basic Definitions and Properties
    1.2 Functions and Sets
    1.3 Equivalence of Sets; Countability
    1.4 Algebras,σ-Algebras,and Monotone Classes

    2 THE REAL NUMBER SYSTEM AND CALCULUS
    Biography: Georg Friedrich Bernhard Riemann
    2.1 The Real Number System
    2.2 Sequences of Real Numbers
    2.3 Open and Closed Sets
    2.4 Real-Valued Functions
    2.5 The Cantor Set and Cantor Function
    2.6 The Riemann Integral

    PART TWO Measure,Integration,and DifFerentiation
    3 LEBESGUE THEORY ON THE REAL LINE
    Biography: Emile Felix-Edouard-Justin Borel
    3.1 Borel Measurable Functions and Borel Sets
    3.2 Lebesgue Outer Measure
    3.3 Further Properties of Lebesgue Outer Measure
    3.4 Lebesgue Measure

    4 THE LEBESGUE INTEGRAL ON THE REAL LINE
    Biography: Henri Leon Lebesgue
    4.1 The Lebesgue Integral for Nonnegative Functions
    4.2 Convergence Properties of the Lebesgue Integral for
    Nonnegative Functions
    4.3 The General Lebesgue Integral
    4.4 Lebesgue Almost Everywhere

    5 ELEMENTS OF MEASURE THEORY
    Biography: Constantin Carath~odory
    5.1 Measure Spaces
    5.2 Measurable Functions
    5.3 The Abstract Lebesgue Integral for Nonnegative Functior
    5.4 The General Abstract Lebesgue Integral
    5.5 Convergence in Measure

    6 EXTENSIONS TO MEASURES AND PRODUCT MEASURE
    Biography: Guido Fubini
    6.1 Extensions to Measures
    6.2 The Lebesgue-Stieltjes Integral
    6.3 Product Measure Spaces
    6.4 Iteration of Integrals in Product Measure Spaces

    7 ELEMENTS OF PROBABILITY
    Biography: Andrei Nikolaevich Kolmogorov
    7.1 The Mathematical Model for Probability
    7.2 Random Variables
    7.3 Expectation of Random Variables
    7.4 The Law of Large Numbers

    8 DIFFERENTIATION AND ABSOLUTE CONTINUITY
    Biography: Giuseppe Vitafi
    8.1 Derivatives and Dini-Derivates
    8.2 Functions of Bounded Variation
    8.3 The Indefinite Lebesgne Integral
    8.4 Absolutely Continuous Functions

    9 SIGNED AND COMPLEX MEASURES
    Biography: Johann Radon
    9.1 Signed Measures
    9.2 The Radon-Nikodym Theorem
    9.3 Signed and Complex Measures
    9.4 Decomposition of Measures
    9.5 Measurable Transformati6ns and the General
    Change-of-Variable Formula
    PART THREE
    Topological, Metric, and Normed Spaces

    10 TOPOLOGIES, METRICS, AND NORMS
    Biography: Felix Hausdorff
    10.1 Introduction to Topological Spaces
    10.2 Metrics and Norms
    10.3 Weak Topologies
    10.4 Closed Sets, Convergence, and Completeness
    10.5 Nets and Continuity
    10.5 Separation Properties
    10.7 Connected Sets

    11 SEPARABILITY AND COMPACTNESS
    Biography: Maurice Frechet
    11.1 Separability, Second Countability, and Metrizability
    11.2 Compact Metric Spaces
    11.3 Compact Topological Spaces
    11.4 Locally Compact Spaces
    11.5 Function Spaces

    12 COMPLETE AND COMPACT SPACES
    Biography: Marshall Harvey Stone
    12.1 The Baire Category Theorem
    12.2 Contractions of Complete Metric Spaces
    12.3 Compactness in the Space C(□, A)
    12.4 Compactness of Product Spaces
    12.5 Approximation by Functions from a Lattice
    12.5 Approximation by Functions from an Algebra

    13 HILBERT SPACES AND BANACH SPACES
    Biography: David Hilbert
    13.1 Preliminaries on Normed Spaces
    13.2 Hilbert Spaces
    13.3 Bases and Duality in Hilbert Spaces
    13.4 □-Spaces
    13.5 Nonnegative Linear Functionals on C(□)
    13.5 The Dual Spaces of C(□) and C0(□)

    14 NORMED SPACES AND LOCALLY CONVEX SPACES
    Biography: Stefan Banach
    14.1 The Hahn-Banach Theorem
    14.2 Linear Operators on Banach Spaces
    14.3 Compact Self-Adjoint Operators
    14.4 Topological Linear Spaces
    14.5 Weak and Weak* Topologies
    14.5 Compact Convex Sets
    PART FOUR
    Harmonic Analysis, Dynamical Systems, and Hausdorff Measure

    15 ELEMENTS OF HARMONIC ANALYSIS
    Biography: Ingrid Daubechies
    15.1 Introduction to Fourier Series
    15.2 Convergence of Fourier Series
    15.3 The Fourier Transform
    15.4 Fourier Transforms of Measures
    15.5 □-Theory of the Fourier Transform
    15.5 Introduction to Wavelets
    15.7 Orthonormal Wavelet Bases; The Wavelet Transform

    15 MEASURABLE DYNAMICAL SYSTEMS Biography: Claude E/wood Shannon
    16.1 Introduction and Examples
    16.2 Ergodic Theory
    16.3 Isomorphism of Measurable Dynamical Systems; Entropy
    16.4 The Kolmogorov-Sinai Theorem; Calculation of Entropy

    17 HAUSDORFF MEASURE AND FRACTALS Biography: Benoit B. Mandelbrot
    17.1 Outer Measure and Measurability
    17.2 Hausdorff Measure
    17.3 Hausdorff Dimension and Topological Dimension
    17.4 Fractals
    Index

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购