返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:

  • 油气井工程多相流动(英文版) 孙宝江 著 孙博华 编 叶其孝//王耀东//任朝佐//刘西垣//吴兰成等 译 专业科技
  • 新华书店正版
    • 作者: 孙宝江著 | | 叶其孝//王耀东//任朝佐//刘西垣//吴兰成等译
    • 出版社: 高等教育出版社
    • 出版时间:2016-11-01 00:00:00
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    文轩网图书旗舰店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

         https://product.suning.com/0070067633/11555288247.html

     

    商品参数
    • 作者: 孙宝江著| 叶其孝//王耀东//任朝佐//刘西垣//吴兰成等译
    • 出版社:高等教育出版社
    • 出版时间:2016-11-01 00:00:00
    • 版次:1
    • 印次:1
    • 印刷时间:2016-11-01
    • 字数:280千字
    • 页数:217
    • 开本:16开
    • 装帧:平装
    • 国别/地区:中国
    • 版权提供:高等教育出版社

    油气井工程多相流动(英文版)

    作  者:孙宝江 著 孙博华 编 叶其孝//王耀东//任朝佐//刘西垣//吴兰成等 译
    定  价:69
    出 版 社:高等教育出版社
    出版日期:2016年11月01日
    页  数:217
    装  帧:精装
    ISBN:9787040461572
    主编推荐

    内容简介

    《油气井工程多相流动(英文版)》为油气钻采井筒中的复杂多相流动分析和计算难题提供了解决方案,阐述了多相流计算中所涉及的流型转化机理、流型判别准则、多相流动模型等。通过《油气井工程多相流动(英文版)》七个部分的学习,读者可以逐步认识考虑油一气以及水合物相变的多相流动模型,了解该模型在陆地和海洋钻井井简压力控制水力参数设计和计算中的应用情况。另外,多相流动模型在欠平衡钻井(主要包括气体钻井、环空注气钻井、立管充气钻井、低密度钻井液钻井等)中的应用也在本书中有所讨论。
    针对钻井中酸性气体气侵和水合物的相变等问题给出了新的研究结果。
    完善了多相流动理论,改进了油气钻采过程中复杂多相流动计算模型,展现了石油工程基础理论研究一个热点方向的新成果。
    本书作者是书中多相流动模型和气液流型转化机理的主要完成.人。

    作者简介

     

    精彩内容

    目录
    Preface
    Chapter 1 Introduction
    1.1 Multiphase Flow in the Well
    1.2 Methods
    1.2.1 Theoretical Analysis
    1.2.2 Experimental Study
    1.2.3 Numerical Simulation
    1.3 Parameters
    1.4 Multiphase Flow Patterns
    1.4.1 Flow Patterns of Gas-Liquid Flow
    1.4.2 Gas-Liquid Flow Pattern of Acid Gas Under Supercritical Condition
    1.5 Multiphase Flow Models
    1.5.1 Homogeneous Flow Model
    1.5.2 Separated Flow Model
    1.5.3 Drift-Flux Model
    1.5.4 Statistical Average Model
    Chapter 2 The Void Fraction Wave and Flow Regime Transition
    2.1 Introduction
    2.1.1 Bubble Coalescence and Flow Regime Transition
    2.1.2 Void Fraction Wave and Flow Regime Transition
    2.2 Experimental Setup and Methods
    2.2.1 Experimental Setup
    2.2.2 Observation and Determination of Flow Regimes
    2.2.3 Flow Resistance Measurement
    2.2.4 Flow Rate and Void Fraction Wave Measurement
    2.2.5 Data Processing
    2.3 Formation Mechanism of Slug Flow with Low Continuous Phase Velocity
    2.3.1 Flow Regime Transition
    2.3.2 Analytical Method
    2.3.3 Experimental Results
    2.3.4 Discussion on the Instability of Void Fraction Wave and Formation Mechanism of Taylor Bubble
    2.3.5 Propagation Velocity of Void Fraction Wave
    2.4 Gas-Liquid Flow Regime Transition with High Continuous Phase Velocity
    2.4.1 Flow Regime Transition
    2.4.2 Experimental Results and Discussions
    2.4.3 Mechanism of Losing Stability for Bubbly Flow
    2.4.4 Velocity of Void Fraction Wave
    2.4.5 Non-Linear Properties of the Void Fraction Wave
    Chapter 3 Mnltiphase Flow Model for Well Drilling
    3.1 Continuity Equation
    3.1.1 Continuity Equation in the Annulus
    3.1.2 Continuity Equation in the Drilling Stem
    3.2 Momentum Equation
    3.2.1 Momentum Equation in the Annulus
    3.2.2 Momentum Equation in the Drilling Stem
    3.3 Energy Equation
    3.3.1 Energy Equation in the Annulus
    3.3.2 Energy Equation in the Drilling Stem
    3.4 Applications of the Model
    3.4.1 Underbalanced Drilling
    3.4.2 Kicking and Killing
    3.4.3 Kicking and Killing Afier Acid Gas Influx
    3.4.4 Kicking and Killing for Deepwater Drilling
    Chapter 4 Mnltiphase Flow During Underbalanced Drilling
    4.1 Flow Model
    4.1.1 Flow-Governing Equations in the Annulus
    4.1.2 Flow-Governing Equations in the Drilling Stem
    4.1.3 Energy Equations
    4.1.4 Auxiliary Equations
    4.2 Solving Processing
    4.2.1 Definite Conditions
    4.2.2 Discretization of the Model
    4.2.3 Algorithms
    4.3 Case Study
    4.3.1 Gas Drilling
    4.3.2 Drill Pipe Injection-Aerated Drilling
    4.3.3 Annulus Injection-Aerated Drilling
    Chapter 5 Multiphase Flow During Kicking and Killing
    5.1 Common Killing Method
    5.1.1 Killing Parameters of Driller's Method and Wait and Weight Method
    5.1.2 The Circulate-and-Weight Method
    5.2 Multiphase Flow Model
    5.2.1 Governing Equations for Killing
    5.2.2 Governing Equation for Kicking
    5.2.3 Auxiliary Equations
    5.3 Solving Process
    5.3.1 Definite Conditions
    5.3.2 Discretization of the Model
    5.3.3 Algorithms
    5.4 Case Study
    5.4.1 Basic Parameters of the Well
    5.4.2 Simulations of Overflow
    5.4.3 Hydraulic Parameters for Killing
    Chapter 6 Multiphase Flow During Kicking and Killing with Acid Gas
    6.1 Flow Model
    6.1.1 Flow Governing Equations for Killing Acid Gas Kicking
    6.1.2 Flow Governing Equations for Acid Gas Kicking
    6.1.3 Auxiliary Equations
    6.2 The Solving Process
    6.2.1 Definite Conditions
    6.2.2 Algorithms
    6.3 Simulations and Case Study
    6.3.1 Basic Parameters of the Well
    6.3.2 Acid Gas Compressibility and Density in the Wellbore
    6.3.3 Acid Gas Solubility in the Wellbore
    6.3.4 Acid Gas Expansion in the Wellbore
    6.3.5 Impact on the Pit Gain
    Chapter 7 Multiphase Flow During Kicking and Killing in Deepwater Drilling
    7.1 Common Deepwater Killing Method
    7.1.1 Dynamic Killing Method
    7.1.2 Advanced Driller's Method
    7.1.3 Additional Flow Rate Method
    7.2 Flow Model
    7.2.1 Governing Equations for Deepwater Well Killing
    7.2.2 Governing Equations for Kicking
    7.2.3 Auxiliary Equations
    7.3 The Solving Process
    7.3.1 Definite Conditions
    7.3.2 Algorithms
    7.4 Case Study
    7.4.1 Basic Parameters of the Well
    7.4.2 Simulations of Kicks and Blowout
    7.4.3 Simulation of the Killing Process
    References
    Author Index
    Subject Index

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购