文轩网图书旗舰店
  • 扫码下单

  • 小波分析导论 (美)瓦尔纳 著 文教 文轩网
  • 新华书店正版
    • 作者: (美)瓦尔纳著
    • 出版社: 世界图书出版公司
    • 出版时间:2011-07-01 00:00:00
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    店铺装修中

    商家:
    文轩网图书旗舰店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    文轩网图书旗舰店

  •      https://product.suning.com/0070067633/11555288247.html

     

    商品参数
    • 作者: (美)瓦尔纳著
    • 出版社:世界图书出版公司
    • 出版时间:2011-07-01 00:00:00
    • 版次:1
    • 印次:1
    • 印刷时间:2011-07-01
    • 页数:449
    • 开本:24开
    • 装帧:平装
    • 国别/地区:中国
    • 版权提供:世界图书出版公司

    小波分析导论

    作  者:(美)瓦尔纳 著
    定  价:59
    出 版 社:世界图书出版公司
    出版日期:2011年07月01日
    页  数:449
    装  帧:平装
    ISBN:9787510037610
    主编推荐

    内容简介

        《小波分析导论(英文影印版)》是一部全面讲述小波分析理论的基础教程,主要内容包括小波基的构造和分析。通过详细讲述哈尔级数展开了小波理论中心思想的讨论,进而运用更加抽象的方法讲述哈尔级数,更深层次的讲述了哈尔结构的变化和扩展。目次:(第一部分)基础:函数和收敛;傅里叶级数;傅里叶变换;信号和系统;(第二部分)哈尔系统:离散哈尔变换;(第三部分)正交小波基:光滑、紧支撑小波包;(第四部分)其他小波结构:双正交小波;小波包;(第五部分)应用:图像压缩;积分算子。附录。
        读者对象:数学、数字图像处理和数字信号处理专业的学生和相关工程应用领域的研究生入门。

    作者简介

    精彩内容

    目录
    preface
    i preliminaries
    1 functions and convergence
    1.1 functions
    1.1.1 bounded (l∞) functions
    1.1.2 integrable (l1) functions
    1.1.3 square integrable (l2) functions
    1.1.4 differentiable (cn) functions
    1.2 convergence of sequences of functions
    1.2.1 numerical convergence
    1.2.2 pointwise convergence
    1.2.3 uniform (l∞) convergence
    1.2.4 mean (ll) convergence
    1.2.5 mean-square (l2) convergence
    1.2.6 interchange of limits and integrals
    2 fourier series
    2.1 trigonometric series
    2.1.1 periodic functions
    2.1.2 the trigonometric system
    .2.1.3 the fourier coefficients
    2.1.4 convergence of fourier series
    2.2 approximate identities
    2.2.1 motivation from fourier series
    2.2.2 definition and examples
    2.2.3 convergence theorems
    2.3 generalized fourier series
    2.3.1 orthogonality
    2.3.2 generalized fourier series
    2.3.3 completeness
    3 the fourier transform
    3.1 motivation and definition
    3.2 basic properties of the fourier transform
    3.3 fourier inversion
    3.4 convolution
    3.5 plancherel's formula
    3.6 the fourier transform for l2 functions
    3.7 smoothness versus decay
    3.8 dilation, translation, and modulation
    3.9 bandlimited functions and the sampling formula
    4 signals and systems
    4.1 signals
    4.2 systems
    4.2.1 causality and stability
    4.3 periodic signals and the discrete fourier transform
    4.3.1 the discrete fourier transform
    4.4 the fast fourier transform
    4.5 l2 fourier series
    ii the haar system
    5 the haar system
    5.1 dyadic step functions
    5.1.1 the dyadic intervals
    5.1.2 the scale j dyadic step functions
    5.2 the haar system
    5.2.1 the haar scaling functions and the haar functions.
    5.2.2 orthogonality of the haar system
    5.2.3 the splitting lemma
    5.3 haar bases on [0, 1]
    5.4 comparison of haar series with fourier series
    5.4.1 representation of functions with small support
    5.4.2 behavior of haar coefficients near jump discontinuities
    5.4.3 haar coefficients and global smoothness
    5.5 haar bases on r
    5.5.1 the approximation and detail operators
    5.5.2 the scale j haar system on r
    5.5.3 the hair system on r
    6 the discrete haar transform
    6.1 motivation
    6.1.1 the discrete haar transform (dht)
    6.2 the dht in two dimensions
    6.2.1 the row-wise and column-wise approximations and details
    6.2.2 the dht for matrices
    6.3 image analysis with the dht
    6.3.1 approximation and blurring
    6.3.2 horizontal, vertical, and diagonal edges
    6.3.3 "naive" image compression
    iii orthonormal wavelet bases
    7 multiresolution analysis
    7.1 orthonormal systems of translates
    7.2 definition of multiresolution analysis
    7.2.1 some basic properties of mras
    7.3 examples of multiresolution analysis
    7.3.1 the haar mra
    7.3.2 the piecewise linear mra
    7.3.3 the bandlimited mra
    7.3.4 the meyer mra
    7.4 construction and examples of orthonormal wavelet bases
    7.4.1 examples of wavelet bases
    7.4.2 wavelets in two dimensions
    7.4.3 localization of wavelet bases
    7.5 proof of theorem 7.35
    7.5.1 sufficient conditions for a wavelet basis
    7.5.2 proof of theorem 7.35
    7.6 necessary properties of the scaling function
    7.7 general spline wavelets
    7.7.1 basic properties of spline functions
    7.7.2 spline multiresolution analyses
    8 the discrete wavelet transform
    8.1 motivation: from mra to a discrete transform
    8.2 the quadrature mirror filter conditions
    8.2.1 motivation from mra
    8.2.2 the approximation and detail operators and their adjoints
    8.2.3 the quadrature mirror filter (qmf) conditions
    8.3 the discrete wavelet transform (dwt)
    8.3.1 the dwt for signals
    8.3.2 the dwt for finite signals
    8.3.3 the dwt as an orthogonal transformation
    8.4 scaling functions from scaling sequences
    8.4.1 the infinite product formula
    8.4.2 the cascade algorithm
    8.4.3 the support of the scaling function
    9 smooth, compactly supported wavelets
    9.1 vanishing moments
    9.1.1 vanishing moments and smoothness
    9.1.2 vanishing moments and approximation
    9.1.3 vanishing moments and the reproduction of polynomials
    9.1.4 equivalent conditions for vanishing moments
    9.2 the daubechies wavelets
    9.2.1 the daubechies polynomials
    9.2.2 spectral factorization
    9.3 image analysis with smooth wavelets
    9.3.1 approximation and blurring
    9.3.2 "naive" image compression with smooth wavelets
    iv other wavelet constructions
    10 biorthogonal wavelets
    10.1 linear independence and biorthogonality
    10.2 riesz bases and the frame condition
    10.3 riesz bases of translates
    10.4 generalized multiresolution analysis (gmra)
    10.4.1 basic properties of gmra
    10.4.2 dual gmra and riesz bases of wavelets
    10.5 riesz bases orthogonal across scales
    10.5.1 example: the piecewise linear gmra
    10.6 a discrete transform for biorthogonal wavelets
    10.6.1 motivation from gmra
    10.6.2 the qmf conditions
    10.7 compactly supported biorthogonal wavelets
    10.7.1 compactly supported spline wavelets
    10.7.2 symmetric biorthogonal wavelets
    10.7.3 using symmetry in the dwt
    11 wavelet packets
    11.1 motivation: completing the wavelet tree
    11.2 localization of wavelet packets
    11.2.1 time/spatial localization
    11.2.2 frequency localization
    11.30rthogonality and completeness properties of wavelet packets
    11.3.1 wavelet packet bases with a fixed scale
    11.3.2 wavelet packets with mixed scales
    11.4 the discrete wavelet packet transform (dwpt)
    11.4.1 the dwpt for signals
    11.4.2 the dwpt for finite signals
    11.5 the best-basis algorithm
    11.5.1 the discrete wavelet packet library
    11.5.2 the idea of the best basis
    11.5.3 description of the algorithm
    v applications
    12 image compression
    12.1 the transform step
    12.1.1 wavelets or wavelet packets?
    12.1.2 choosing a filter
    12.2 the quantization step
    12.3 the coding step
    12.3.1 sources and codes
    12.3.2 entropy and information
    12.3.3 coding and compression
    12.4 the binary huffman code
    12.5 a model wavelet transform image coder
    12.5.1 examples
    13 integral operators
    13.1 examples of integral operators
    13.1.1 sturm-liouville boundary value problems
    13.1.2 the hilbert transform
    13.1.3 the radon transform
    13.2 the bcr algorithm
    13.2.1 the scale j approximation to t
    13.2.2 description of the algorithm
    vi appendixes
    a review of advanced calculus and linear algebra
    a.1 glossary of basic terms from advanced calculus and linear algebra
    a.2 basic theorems from advanced calculus
    b excursions in wavelet theory
    b.1 other wavelet constructions
    b.1.1 m-band wavelets
    b.1.2 wavelets with rational noninteger dilation factors
    b.1.3 local cosine bases
    b.1.4 the continuous wavelet transform
    b.1.5 non~mra wavelets
    b.1.6 multiwavelets
    b.2 wavelets in other domains
    b.2.1 wavelets on intervals
    b.2.2' wavelets in higher dimensions
    b.2.3 the lifting scheme
    b.3 applications of wavelets
    b.3.1 wavelet denoising
    b.3.2 multiscale edge detection
    b.3.3 the fbi fingerprint compression standard
    c references cited in the text
    index

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购