返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:
本店所有商品

  • 正版 深入浅出图神经网络 GNN原理解析 刘忠雨 李彦霖 周洋 人工智能 机器学习 深度学习 重构损失方法 变体 框
  • 新商品上架
    • 作者: 刘忠雨,李彦霖,周洋著
    • 出版社: 机械工业出版社
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    句字图书专营店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

    商品参数
    • 作者: 刘忠雨,李彦霖,周洋著
    • 出版社:机械工业出版社
    • ISBN:9789694237452
    • 版权提供:机械工业出版社

     

      商品基本信息

    商品名称:

      深入浅出图神经网络:GNN原理解析

    作者:

      刘忠雨 李彦霖 周洋

    市场价:

      89.00

    ISBN号:

      9787111643630

    版次:

      1-1

    出版日期:

      2020-01

    页数:

      224

    字数:

      84

    出版社:

      机械工业出版社

     

      目录

    前言

    第1章 图的概述1

    1.1 图的基本定义1

    1.1.1 图的基本类型2

    1.1.2 邻居和度4

    1.1.3 子图与路径4

    1.2 图的存储与遍历5

    1.2.1 邻接矩阵与关联矩阵5

    1.2.2 图的遍历6

    1.3 图数据的应用场景7

    1.4 图数据深度学习10

    1.5 参考文献13

    第2章 神经网络基础17

    2.1 机器学习基本概念17

    2.1.1 机器学习分类17

    2.1.2 机器学习流程概述18

    2.1.3 常见的损失函数21

    2.1.4 梯度下降算法23

    2.2 神经网络25

    2.2.1 神经元25

    2.2.2 多层感知器27

    2.3 激活函数29

    2.3.1 S型激活函数30

    2.3.2 ReLU及其变种30

    2.4 训练神经网络33

    2.4.1 神经网络的运行过程34

    2.4.2 反向传播34

    2.4.3 优化困境36

    2.5 参考文献38

    第3章 卷积神经网络39

    3.1 卷积与池化39

    3.1.1 信号处理中的卷积39

    3.1.2 深度学习中的卷积操作42

    3.1.3 池化46

    3.2 卷积神经网络46

    3.2.1 卷积神经网络的结构47

    3.2.2 卷积神经网络的特点49

    3.3 特殊的卷积形式51

    3.3.1 1×1卷积51

    3.3.2 转置卷积52

    3.3.3 空洞卷积54

    3.3.4 分组卷积55

    3.3.5 深度可分离卷积55

    3.4 卷积网络在图像分类中的应用56

    3.4.1 VGG56

    3.4.2 Inception系列57

    3.4.3 ResNet60

    3.5 参考文献62

    第4章 表示学习65

    4.1 表示学习65

    4.1.1 表示学习的意义65

    4.1.2 离散表示与分布式表示66

    4.1.3 端到端学习是一种强大的表示学习方法68

    4.2 基于重构损失的方法—自编码器69

    4.2.1 自编码器69

    4.2.2 正则自编码器71

    4.2.3 变分自编码器72

    4.3 基于对比损失的方法—Word2vec75

    4.4 参考文献79

    第5章 图信号处理与图卷积神经网络81

    5.1 矩阵乘法的三种方式81

    5.2 图信号与图的拉普拉斯矩阵83

    5.3 图傅里叶变换85

    5.4 图滤波器90

    5.4.1 空域角度93

    5.4.2 频域角度94

    5.5 图卷积神经网络96

    5.6 GCN实战101

    5.7 参考文献109

    第6章 GCN的性质111

    6.1 GCN与CNN的联系111

    6.2 GCN能够对图数据进行端对端学习115

    6.3 GCN是一个低通滤波器120

    6.4 GCN的问题—过平滑122

    6.5 参考文献127

    第7章 GNN的变体与框架129

    7.1 GraphSAGE129

    7.1.1 采样邻居130

    7.1.2 聚合邻居131

    7.1.3 GraphSAGE算法过程132

    7.2 GAT134

    7.2.1 注意力机制134

    7.2.2 图注意力层137

    7.2.3 多头图注意力层138

    7.3 R-GCN140

    7.3.1 知识图谱140

    7.3.2 R-GCN141

    7.4 GNN的通用框架143

    7.4.1 MPNN143

    7.4.2 NLNN146

    7.4.3 GN147

    7.5 GraphSAGE实战148

    7.6 参考文献153

    第8章 图分类155

    8.1 基于全局池化的图分类155

    8.2 基于层次化池化的图分类156

    8.2.1 基于图坍缩的池化机制157

    8.2.2 基于TopK的池化机制165

    8.2.3 基于边收缩的池化机制168

    8.3 图分类实战169

    8.4 参考文献177

    第9章 基于GNN的图表示学习179

    9.1 图表示学习180

    9.2 基于GNN的图表示学习182

    9.2.1 基于重构损失的GNN183

    9.2.2 基于对比损失的GNN184

    9.3 基于图自编码器的推荐系统188

    9.4 参考文献195

    第10章 GNN的应用简介197

    10.1 GNN的应用简述197

    10.2 GNN的应用案例199

    10.2.1 3D视觉199

    10.2.2 基于社交网络的推荐系统203

    10.2.3 视觉推理205

    10.3 GNN的未来展望208

    10.4 参考文献209

    附录A 符号声明211

      内容简介

       

    内容简介

    这是一本从原理、算法、实现、应用4个维度详细讲解图神经网络的著作,在图神经网络领域具有重大的意义。

    本书作者是图神经网络领域的技术专家,作者所在的公司极验也是该领域的领先者。本书是作者和极验多年研究和实践经验的总结,内容系统、扎实、深入浅出,得到了白翔、俞栋等几位来自学术界和企业界的领军人物的高度评价和强烈推荐。

    全书共10章:

    第1~4章全面介绍了图、图数据、卷积神经网络以及表示学习等基础知识,是阅读本书的预备知识;

    第5~6章从理论的角度出发,讲解了图信号处理和图卷积神经网络,深入剖析了图卷积神经网络的性质,并提供了GCN实现节点分类的实例。

    第7~9章全面的讲解了图神经网络的各种变体及范式、图分类机制及其实践,以及基于GNN的图表示学习;

    第10章介绍了图神经网络的*新研究和应用。

    1
    • 商品详情
    • 内容简介

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购