由于此商品库存有限,请在下单后15分钟之内支付完成,手慢无哦!
100%刮中券,最高50元无敌券,券有效期7天
活动自2017年6月2日上线,敬请关注云钻刮券活动规则更新。
如活动受政府机关指令需要停止举办的,或活动遭受严重网络攻击需暂停举办的,或者系统故障导致的其它意外问题,苏宁无需为此承担赔偿或者进行补偿。
正版 Python数据挖掘与机器学习实战 方巍 机器学习 深度学习 在线学习 强化学习 人工智能 爬虫框架 工作流
¥ ×1
商品基本信息 | |
商品名称: | Python数据挖掘与机器学习实战 |
作者: | 方巍 |
市场价: | 79.00 |
ISBN号: | 9787111626817 |
版次: | 1-1 |
出版日期: | 1900-01 |
页数: | 263 |
字数: | 500 |
出版社: | 机械工业出版社 |
目录 | |
前言 第1章 机器学习基础1 1.1 机器学习概述2 1.2 机器学习的发展历程2 1.3 机器学习分类3 1.3.1 监督学习3 1.3.2 无监督学习3 1.3.3 强化学习4 1.3.4 深度学习4 1.4 机器学习的应用4 1.5 开发机器学习的步骤7 1.6 Python语言的优势8 1.6.1 可执行伪代码8 1.6.2 Python语言使用广泛8 1.6.3 Python语言特色8 1.6.4 Python语言的缺点9 1.7 Python开发工具介绍9 1.7.1 IDLE简介10 1.7.2 IPython简介11 1.7.3 PyCharm简介11 1.7.4 Jupyter Notebook简介12 1.7.5 Anaconda和Spyder简介13 1.8 本章小结15 第2章 Python语言简介16 2.1 搭建Python开发环境16 2.1.1 安装Anaconda16 2.1.2 安装Spyder18 2.1.3 运行和保存Python程序19 2.2 Python计算与变量19 2.2.1 用Python做简单的计算20 2.2.2 Python的运算符20 2.2.3 Python的变量21 2.3 Python的字符串22 2.4 Python的列表23 2.5 Python的元组25 2.6 Python的字典27 2.7 网络爬虫的发展历史和分类28 2.7.1 网络爬虫的发展历史28 2.7.2 网络爬虫的分类30 2.8 网络爬虫的原理30 2.8.1 理论概述30 2.8.2 爬虫的工作流程31 2.9 爬虫框架介绍36 2.9.1 Scrapy介绍36 2.9.2 XPath介绍39 2.10 网络爬虫的设计与实现40 2.10.1 网络爬虫的总体设计40 2.10.2 具体实现过程40 2.10.3 爬虫结果与分析45 2.11 本章小结49 第3章 回归分析50 3.1 回归分析概述50 3.1.1 基本概念50 3.1.2 可以解决的问题51 3.1.3 回归分析的步骤51 3.2 线性回归51 3.2.1 简单线性回归分析51 3.2.2 多元线性回归分析52 3.2.3 非线性回归数据分析52 3.3 用Python实现一元线性回归53 3.4 用Python实现多元线性回归56 3.4.1 使用pandas读取数据56 3.4.2 分析数据57 3.4.3 线性回归模型58 3.5 基于线性回归的股票预测62 3.5.1 数据获取62 3.5.2 数据预处理63 3.5.3 编码实现64 3.5.4 结果分析65 3.6 逻辑回归66 3.6.1 构造预测函数67 3.6.2 构造损失函数J68 3.6.3 梯度下降法求解最小值69 3.7 基于逻辑回归的环境数据检测71 3.7.1 数据来源71 3.7.2 数据处理72 3.7.3 异常数据分析72 3.7.4 数据预测74 3.8 本章小结76 第4章 决策树与随机森林77 4.1 决策树77 4.1.1 决策树的基本原理77 4.1.2 决策树的分类78 4.1.3 决策树的优缺点81 4.2 使用决策树对鸢尾花分类82 4.2.1 Iris数据集简介82 4.2.2 读取数据83 4.2.3 鸢尾花类别83 4.2.4 数据可视化84 4.2.5 训练和分类85 4.2.6 数据集多类分类86 4.2.7 实验结果86 4.3 随机森林87 4.3.1 随机森林的基本原理87 4.3.2 随机森林的收敛性88 4.3.3 随机森林的OOB估计89 4.3.4 随机森林的随机特征选取89 4.3.5 随机森林的优缺点90 4.4 葡萄酒数据集的随机森林分类91 4.4.1 数据收集91 4.4.2 相关库函数简介92 4.4.3 数据基本分析93 4.4.4 使用随机森林构建模型97 4.4.5 实验结果98 4.5 本章小结99 第5章 支持向量机100 5.1 SVM的工作原理及分类100 5.1.1 支持向量机的原理100 5.1.2 线性可分的支持向量机101 5.1.3 非线性可分的支持向量机102 5.2 核函数103 5.2.1 核函数简介103 5.2.2 几种常见的核函数104 5.2.3 核函数如何处理非线性数据104 5.2.4 如何选择合适的核函数105 5.3 SVR简介106 5.3.1 SVR原理106 5.3.2 SVR模型106 5.4 时间序列曲线预测107 5.4.1 生成训练数据集107 5.4.2 运用不同的核函数进行支持向量回归108 5.4.3 生成测试数据集109 5.4.4 预测并生成图表110 5.4.5 获取预测误差111 5.4.6 创建数据集112 5.4.7 选取最优参数112 5.4.8 预测并生成图表112 5.4.9 获取预测误差113 5.5 本章小结114 第6章 隐马尔可夫模型115 6.1 隐马尔可夫模型简介115 6.1.1 隐马尔可夫模型的概念115 6.1.2 详例描述116 6.1.3 HMM流程117 6.2 Viterbi算法117 6.3 HMM模型用于中文分词119 6.3.1 UI界面119 6.3.2 数据及其编码119 6.3.3 HMM模型121 6.3.4 实验结果122 6.4 本章小结124 第7章 BP神经网络模型125 7.1 背景介绍125 7.2 结构特点126 7.3 网络模型126 7.4 人工神经网络简介127 7.4.1 神经元127 7.4.2 单层神经网络128 7.4.3 双层神经网络129 7.4.4 多层神经网络130 7.5 BP神经网络131 7.6 通过TensorFlow实现BP神经网络132 7.7 本章小结134 第8章 卷积神经网络135 8.1 传统图像识别技术135 8.1.1 图像预处理135 8.1.2 图像特征提取136 8.1.3 图像分类方法136 8.2 卷积神经网络结构简介137 8.2.1 卷积神经网络发展历程137 8.2.2 卷积神经网络结构简介137 8.3 卷积神经网络的结构及原理139 8.3.1 卷积层139 8.3.2 池化层140 8.3.3 激活函数142 8.3.4 全连接层144 8.3.5 反馈运算144 8.4 卷积神经网络的优点146 8.5 雷达剖面图识别模型148 8.5.1 数据准备148 8.5.2 构建模型150 8.6 模型测试分析157 8.6.1 部署基本模块157 8.6.2 创建项目结构157 8.6.3 训练网络158 8.6.4 自动化测试158 8.7 本章小结160 第9章 循环神经网络161 9.1 自然语言处理161 9.1.1 自然语言处理概述161 9.1.2 自然语言处理应用162 9.2 对话系统163 9.2.1 对话系统分类163 9.2.2 聊天机器人分类164 9.3 基于LSTM结构的循环神经网络165 9.3.1 循环神经网络165 9.3.2 通过时间反向传播166 9.3.3 长短期记忆网络(LSTM)169 9.4 Seq2Seq模型172 9.4.1 Encoder-Decoder框架173 9.4.2 Attention机制174 9.5 聊天机器人的程序实现176 9.5.1 准备数据176 9.5.2 创建模型178 9.5.3 训练模型179 9.5.4 测试模型180 9.6 本章小结181 第10章 聚类与集成算法182 10.1 聚类方法简介182 10.1.1 聚类定义183 10.1.2 聚类要求183 10.2 聚类算法184 10.2.1 划分方法184 10.2.2 层次方法184 10.2.3 基于密度的方法184 10.2.4 基于网格的方法185 10.2.5 基于模型的方法185 10.3 K-Means算法185 10.3.1 K-Means算法概述185 10.3 |
内容简介 | |
本书作为数据挖掘入门读物,基于真实数据集进行案例实战,使用Python数据科学库,从数据预处理开始一步步介绍数据建模和数据挖掘的过程。主要介绍了数据挖掘的基础知识、基本工具和实践方法,通过循序渐进地讲解算法,带领读者轻松踏上数据挖掘之旅。本书采用理论与实践相结合的方式,呈现了如何使用逻辑回归进行环境数据检测,如何使用HMM进行中文分词,如何利用卷积神经网络识别雷达剖面图,如何使用循环神经网络构建聊天机器人,如何使用朴素贝叶斯算法进行破产预测,如何使用DCGAN网络进行人脸生成等。本书也涉及神经网络、在线学习、强化学习、深度学习、大数据处理等内容。 本书适合对传统数据挖掘和机器学习算法开发感兴趣的读者阅读,也适合需要系统掌握深度学习的开发人员阅读。 |
亲,大宗购物请点击企业用户渠道>小苏的服务会更贴心!
亲,很抱歉,您购买的宝贝销售异常火爆让小苏措手不及,请稍后再试~
非常抱歉,您前期未参加预订活动,
无法支付尾款哦!
抱歉,您暂无任性付资格