返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:
本店所有商品

  • [正版新书]医疗大数据与机器学习 付赛际、田英杰 清华大学出版社 ①医学-数据处理-研究②医学-机器学习-研究
  • 新商品上架
    • 作者: 付赛际、田英杰著
    • 出版社: 清华大学出版社
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    句字图书专营店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

    商品参数
    • 作者: 付赛际、田英杰著
    • 出版社:清华大学出版社
    • 开本:16开
    • ISBN:9783997160423
    • 版权提供:清华大学出版社

     书名:  医疗大数据与机器学习
     出版社:  清华大学出版社
     出版日期  2023
     ISBN号:  9787302635161
    主要研究内容与特色:
    (1) 利用文本挖掘和专家经验构建机器学习关键问题分析框架,总结机器学习在医疗大数据挖掘中面临的若干关键问题。
    (2) 利用简约核构建面向不完整视角问题的高效机器学习方法。
    (3) 利用非对称损失函数构建面向类别不平衡问题的机器学习与深度学习方法。读者对象:
    从事人工智能、机器学习、医疗大数据分析方向的学术界与工业界的相关人士。
    (4)围绕不完整视角与类别不平衡这两个关键问题展开深入研究,有效提升了医学诊断的决策效率。


    付赛际,北京邮电大学讲师。研究方向:医疗大数据挖掘、机器学习与最优化。近年来在Information Sciences, Knowledge-Based Systems, Information Processing & Management发表论文10余篇。现任Annals of Data Science编委。参加国家自然科学基金面上项目、重点项目若干项。

    本书围绕医疗大数据挖掘中的热点问题,展开深入的理论与应用研究,可有效地辅助医学诊断。有助于减少专业医师的培训成本,为医学诊断提供有效的辅助工具,进而改善医疗资源分配不均的现象,并为人类的生命健康做出重要贡献。


    目 录
    第1章 医疗大数据挖掘 1
    1.1?医疗大数据  1
    1.2 医疗大数据文献分析  4
    1.2.1 数据准备 4
    1.2.2 文本挖掘 5
    1.2.3 专家经验 5
    1.3 挖掘现状与关键问题  10
    1.3.1 医学图像分类 10
    1.3.2 医学图像检测 17
    1.3.3 医学图像分割 20
    1.3.4 医学图像生成 23
    1.3.5 关键问题 25
    第2章 机器学习问题 28
    2.1 二分类问题  28
    2.2 多分类问题  29
    2.3 多标签分类问题  30
    2.4 多视角分类问题  31
    2.5 多示例分类问题  31
    2.6 多任务分类问题  33
    2.7 迁移学习问题  34
    2.8 弱监督分类问题  34
    2.9 数据生成问题  35
    第3章 机器学习方法 37
    3.1 传统机器学习方法  37
    3.1.1 k近邻 37
    3.1.2 朴素贝叶斯 38
    3.1.3 决策树 40
    3.1.4 随机森林 41
    3.1.5 自适应增强 41
    3.1.6 支持向量机 42
    3.2 深度学习方法  44
    3.2.1 CNN 44
    3.2.2 RNN 46
    3.2.3 GAN 46
    第4章 多视角学习 48
    4.1 多视角学习方法  48
    4.1.1 基于完整视角的学习方法 48
    4.1.2 基于不完整视角的学习方法 50
    4.2 基础模型  53
    4.2.1 RSVM 53
    4.2.2 PSVM-2V 54
    4.3 RPSVM-2V  55
    4.4 理论分析  58
    4.5 拓展模型  60
    4.5.1 RSVM-2K 60
    4.5.2 RMKL 62
    4.6 实验分析  64
    4.6.1 实验设置 64
    4.6.2 实验结果 65
    4.6.3 参数敏感性分析 71
    4.6.4 谱分析 74
    第5章 类别不平衡学习(一) 77
    5.1 类别不平衡学习方法  77
    5.1.1 采样 77
    5.1.2 代价敏感学习 78
    5.1.3 集成学习 79
    5.2 DEC  81
    5.3 修正Stein损失函数  81
    5.4 CSMS  83
    5.5 理论分析  86
    5.6 模型优化  86
    5.7 实验分析  88
    5.7.1 实验设置 88
    5.7.2 实验结果 89
    5.7.3 参数敏感性分析 93
    5.7.4 收敛性分析 93
    第6章 类别不平衡学习(二) 98
    6.1 v-SVM  98
    6.2 LINEX损失函数  99
    6.3 v-CSSVM  99
    6.4 理论分析  101
    6.5 模型优化  102
    6.5.1 ADMM 102
    6.5.2 GD 104
    6.6 实验分析  105
    6.6.1 实验设置 105
    6.6.2 实验结果 106
    6.6.3 参数敏感性分析 109
    6.6.4 收敛性分析 110
    第7章 类别不平衡学习(三) 113
    7.1 深度学习中的类别不平衡损失函数  113
    7.1.1 WCE 114
    7.1.2 FL 114
    7.1.3 其他 115
    7.2 深度LINEX损失函数  116
    7.2.1 BC-LINEX 116
    7.2.2 MC-LINEX 117
    7.2.3 损失函数比较 119
    7.3 模型优化  120
    7.3.1 BC-LINEX权重更新 120
    7.3.2 MC-LINEX权重更新 121
    7.4 实验分析  122
    7.4.1 实验设置 122
    7.4.2 实验结果 125
    7.4.3 参数敏感性分析 130
    附录A 132
    A.1 定理4.1证明 132
    A.2 定理4.2证明 132
    A.3 第4章附表 135
    附录B 148
    B.1 第5章附表 148
    附录C 150
    C.1 定理6.1证明 150
    C.2 第6章附表 152
    参考文献 155



     

    1
    • 商品详情
    • 内容简介

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购