第 1 章素数(1) 1
1.1 整除性 1
1.2 素数 2
1.3 算术基本定理的表述 3
1.4 素数序列 4
1.5 关于素数的几个问题 5
1.6 若干记号 6
1.7 对数函数 8
1.8 素数定理的表述 9
本章附注 10
第 2 章素数(2) 12
2.1 Euclid 第二定理的第 一个证明 12
2.2 Euclid 方法的 进一步推论 12
2.3 某种算术级数中的素数 13
2.4 Euclid 定理的第二个证明 14
2.5 Fermat 数和Mersenne 数 15
2.6 Euclid 定理的第三个证明 17
2.7 关于素数公式的进一步结果 18
2.8 关于素数的未解决的问题 19
2.9 整数模 20
2.10 算术基本定理的证明 21
2.11 基本定理的另一个证明 22
本章附注 22
第3 章Farey 数列和Minkowski定理 24
3.1 Farey 数列的定义和 简单的性质 24
3.2 两个特征性质的等价性 25
3.3 定理28 和定理29 的第 一个证明 26
3.4 定理28 和定理29 的第二个证明 26
3.5 整数格点 27
3.6 基本格的某些简单性质 28
3.7 定理28 和定理29 的第三个证明 30
3.8 连续统的Farey 分割 30
3.9 Minkowski 的一个定理 32
3.10 Minkowski 定理的证明 33
3.11 定理37 的进一步拓展 35
本章附注 37
第4 章无理数 39
4.1 概论 39
4.2 已知的无理数 40
4.3 Pythagoras 定理及其推广 40
4.4 基本定理在定理43~45 证明中的应用 42
4.5 历史杂谈 43
4.6√5 无理性的几何证明 45
4.7 多的无理数 46
本章附注 48
第5 章同余和剩余 49
5.1 公约数和 小公倍数 49
5.2 同余和剩余类 50
5.3 同余式的初等性质 51
5.4 线性同余式 52
5.5 Euler 函数 (m) 54
5.6 定理59 和定理61 对三角和的应用 56
5.7 一个一般性的原理 59
5.8 正十七边形的构造 60
本章附注 65
第6 章Fermat 定理及其推论 66
6.1 Fermat 定理 66
6.2 二项系数的某些性质 66
6.3 定理72 的第二个证明 69
6.4 定理22 的证明 69
6.5 二次剩余 70
6.6 定理79 的特例:Wilson定理 72
6.7 二次剩余和非剩余的初等性质 73
6.8 a (mod m) 的阶 75
6.9 Fermat 定理的逆定理 76
6.10 2p 1 1 能否被p2 整除 77
6.11 Gauss 引理和2 的二次特征 78
6.12 二次互倒律 81
6.13 二次互倒律的证明 83
6.14 素数的判定 84
6.15 Mersenne 数的因子, Euler 的一个定理 86
本章附注 87
第7 章同余式的一般性质 89
7.1 同余式的根 89
7.2 整多项式和恒等同余式 89
7.3 多项式(mod m) 的整除性 91
7.4 素数模同余式的根 92
7.5 一般定理的某些应用 93
7.6 Fermat 定理和Wilson 定理的Lagrange 证明 95
7.7 [ 12 (p 1)]! 的剩余 96
7.8 Wolstenholme 的一个定理 97
7.9 von Staudt 定理 99
7.10 von Staudt 定理的证明 100
本章附注 102
第8 章复合模的同余式 103
8.1 线性同余式 103
8.2 高次同余式 105
8.3 素数幂模的同余式 105
8.4 例子 107
8.5 Bauer 的恒等同余式 108
8.6 Bauer 的同余式:p = 2 的情形 110
8.7 Leudesdorf 的一个定理 111
8.8 Bauer 定理的进一步的推论 113
8.9 2p 1 和(p 1)! 关于模p2 的同余式 116
本章附注 117
第9 章用十进制小数表示数 118
9.1 与给定的数相伴的十进制小数 118
9.2 有限小数和循环小数 121
9.3 用其他进位制表示数 123
9.4 用小数定义无理数 124
9.5 整除性判别法 125
9.6 有 周期的十进制小数 126
9.7 Bachet 的称重问题 127
9.8 Nim 博弈 129
9.9 缺失数字的整数 131
9.10 测度为零的集合 132
9.11 缺失数字的十进制小数 133
9.12 正规数 135
9.13 几乎所有的数都是正规数的证明 136
本章附注 139
第 10 章连分数 141
10.1 有限连分数 141
10.2 连分数的渐近分数 142
10.3 有正的商的连分数 143
10.4 简单连分数 144
10.5 用简单连分数表示不可约有理分数 145
10.6 连分数算法和Euclid 算法 147
10.7 连分数与其渐近分数的差 149
10.8 无限简单连分数 151
10.9 用无限连分数表示无理数 152
10.10 一个引理 153
10.11 等价的数 155
10.12 周期连分数 157
10.13 某些特殊的二次根式 159
10.14 Fibonacci 数列和Lucas数列 162
10.15 用渐近分数作逼近 165
本章附注 168
第 11 章用有理数逼近无理数 169
11.1 问题的表述 169
11.2 问题的推广 170
11.3 Dirichlet 的一个论证方法 171
11.4 逼近的阶 173
11.5 代数数和 数 174
11.6 数的存在性 175
11.7 Liouville 定理和 数的构造 176
11.8 对任意无理数的 逼近的度量 178
11.9 有关连分数的渐近分数的另一个定理 179
11.10 具有有界商的连分数 181
11.11 有关逼近的进一步定理 184
11.12 联立逼近 185
11.13 e 的 性 186
11.14 π 的 性 189
本章附注 192
第 12 章k(1), k(i), k(ρ) 中的算术基本定理 194
12.1 代数数和代数整数 194
12.2 有理整数、Gauss 整数和k(ρ)中的整数
......