返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:
本店所有商品

  • [正版新书] Large-Amplitude Nonlinear Pure Standing-Wave Fields:G
  • 新商品上架
    • 作者: 闵琦著
    • 出版社: 清华大学出版社
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    句字图书专营店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

    商品参数
    • 作者: 闵琦著
    • 出版社:清华大学出版社
    • 开本:16开
    • ISBN:9787302622277
    • 版权提供:清华大学出版社

     书名:  Large-Amplitude Nonlinear Pure Standing-Wave Fields:Generations and Properties(大振幅非线性纯净驻波场:产生及其性质)
     出版社:  清华大学出版社
     出版日期  2022
     ISBN号:  9787302622277
    本书用传递矩阵法分析了截面突变的分节驻波管和截面渐变的驻波管的失谐性质。同时,将传递矩阵法推广用于分析截面逐渐变化的分节驻波管的失谐性质。在此基础上,利用由大口径高功率扬声器和锥形口组成声源,通过实验研究了如何在均匀截面、突变截面和锥形截面驻波管中获取大幅纯驻波场的方法及所获得的大振幅驻波场的非线性特性。此外,对这些驻波管中得到的大振幅纯驻波场的非线性特性进行了比较实验研究。研究结果为非线性驻波场理论的最终建立和非线性驻波场的实际应用提供了可靠的实验依据。

    闵琦,1972年12月生。物理学教授,理学博士。2010年从中国科学院声学研究所马大猷先生创立的九室博士毕业,获理学博士学位,方向为物理声学。现担任教育部物理学教学专业指导委员会西南地区委员、教育部大学物理教学专业指导委员会西南地区委员、红河学院学术委员会专业委员会委员、红河学院工学院学术委员会委员,同时担任红河学院物理学科学术领衔人以及红河学院物理系教学团队带头人。近年来,主持国家自然科学基金项目2项,参与国家自然科学基金项目3项以及中科院三期知识创新工程重要方向资助项目1项,以学术领衔人和专业带头人主持红河学院学科建设、红河学院教学团队建设等校级项目多项。近年来,在国内外物理学、声学知名学术期刊如《Journal of the Acoustical Society of America》、《Physics Letters A》、《Applied Acoustics》、《Acoustical Physics》、《声学学报》、《物理学报》等同时以第一作者和通讯作者发表SCI、EI学术论文近20篇,并担任国内外声学顶级期刊《Applied Acoustics》和《声学学报》审稿人。由科学出版社出版专著1部,机械工业出版社出版教材2部和中国科技大学出版社出版教材1部。

    本书主要介绍了利用普通商业扬声器获取180dB及以上大振幅纯净驻波场,为非线性驻波场理论的最终建立和利用变截面驻波管获取大振幅非线性纯净驻波场的方法奠定坚实的理论和实验基础。



    Contents

    Chapter 1Stepped Acoustic Resonator with an Abrupt Cross Section


    1.1Introduction


    1.2Transfer Matrix Method


    1.3Experimental Setup


    1.4Results


    1.4.1Onestep Acoustic Resonator


    1.4.2Twostep Acoustic Resonator


    1.4.3Multistep Acoustic Resonator


    1.5Conclusions


    References


    Chapter 2Acoustic Resonator with a Gradually Varying Cross Section


    2.1Introduction


    2.2Gradually Varying Shape and Sound Field


    2.2.1Gradually Varying Geometric Shape


    2.2.2Sound Field


    2.3Transfer Matrix and Resonant Condition


    2.3.1Transfer Matrix


    2.3.2Resonant Condition


    2.4Transfer Function and Phase


    2.5Impedance


    2.6Conclusions


    References


    Chapter 3Stepped Acoustic Resonator with a Smooth Transitional Section


    3.1Introduction


    3.2The Transfer Matrices of the Stepped Acoustic Resonator 

    with  a Gradually Varying Crosssectional Area


    3.3Transfer Function and Phase


    3.4Impedance


    3.5Conclusions


    References






    Chapter 4Largeamplitude Standingwave Fields in the Standingwave 

    Tube with a Uniform Cross Section

    4.1Introduction


    4.2Experimental Setup


    4.3Results and Discussions


    4.3.1Transfer Matrix and Resonance Frequencies


    4.3.2Largeamplitude Standingwave Field Excited at Peak 

    Resonant Frequencies


    4.3.3Largeamplitude Standingwave Field Excited at Valley 

    Resonant Frequencies


    4.3.4Variation of the SPL of a Largeamplitude Standingwave 

    Field with the Driving Voltage


    4.4Conclusions


    References


    Chapter 5Largeamplitude Standingwave Fields in the Stepped Standingwave 

    Tube with an Abrupt Cross Section

    5.1Introduction


    5.2The Stepped Standingwave Tube with Abrupt Cross Section


    5.3Results and Discussions


    5.3.1Transfer Function and Resonance Frequency


    5.3.2Largeamplitude Sandingwave Fields Excited at Peak 

    Resonance Frequencies


    5.3.3Largeamplitude Standingwave Fields Excited at Trough 

    Resonance Frequencies


    5.3.4Fundamental Wave SPL of the Largeamplitude Standing

    wave Field Excited at Resonance Frequencies


    5.3.5Particle Velocity Peak of the Largeamplitude Standing

    wave Field Excited at Resonance Frequencies


    5.3.6Wave Distortion of the Largeamplitude Standingwave 

    Field Excited at Resonance Frequencies


    5.4Conclusions


    References


    Chapter 6Largeamplitude Standingwave Fields in the Stepped 

    Standingwave Tube with a Tapered Cross Section

    6.1Introduction


    6.2The Stepped Standingwave Tube with a Tapered Cross Section


    6.3Results and Discussions


    6.3.1Transfer Function and Resonance Frequency


    6.3.2Largeamplitude Sandingwave Fields Excited at Peak 

    Resonance Frequencies


    6.3.3Largeamplitude Standingwave Fields Excited at Trough 

    Resonance Frequencies


    6.3.4Fundamental Wave SPL of the Largeamplitude Standingwave 

    Field Excited at Resonance Frequencies


    6.3.5Particle Velocity Peak of the Largeamplitude Standingwave 

    Field Excited at Resonance Frequencies


    6.3.6Wave Distortion of the Largeamplitude Standingwave 

    Field Excited at Resonance Frequencies


    6.4Conclusions


    References


    Chapter 7Comparison of the Generation of Extremely Nonlinear Pure 

    Standingwave Fields in a Standingwave Tube

    7.1Introduction


    7.2The Standingwave Tube


    7.3Sound Pressure Transfer Function


    7.4Extremely Nonlinear Standingwave Fields at the First 

    Resonance Frequency


    7.4.1Waveform of the Extremely Nonlinear Standingwave Field


    7.4.2Development of the Extremely Nonlinear 

    Standingwave Field


    7.4.3Increase of the SPL with Driving Voltage


    7.5Conclusions


    References

    Preface


    The research on the generation and the extremely nonlinear properties of largeamplitude pure standingwave fields are of great significance to the final establishment and the practical application of nonlinear standingwave field theory. A standingwave tube with nonuniform section has  acoustic dissonant properties, and  largeamplitude pure standingwave fields can be generated in such a tube. 

    In this book, a transfer matrix methods used to analyze the acoustic dissonant properties of  the stepped acoustic resonators with abrupt crosssectional area in Chapter 1 and the acoustic resonators with gradually varying crosssectional area in Chapter 2. As a continuation of the two chapters, the transfer matrix method is extended to analyze the acoustic dissonant properties of stepped acoustic resonators with gradually varying crosssectional area in Chapter 3. 

    A sound source  is composed of a bigcaliber highpower loudspeaker and a conical mouth can converge the energy output of the loudspeaker efficiently. With the improved sound source, the methods to obtain the largeamplitude pure standingwave fields and their extremely nonlinear properties in standingwave tube with uniform cross section are investigated experimentally in Chapter 4. Furthermore, with the same improved sound source and the acoustic dissonant properties of stepped acoustic resonator, the methods to obtain the largeamplitude pure standingwave fields in standingwave tube with abrupt  and  tapered cross sections are investigated experimentally in Chapters 56,respectively. Meanwhile, the extremely nonlinear properties of  obtained largeamplitude pure standingwave fields are also investigated experimentally.

    In Chapter 7, the acoustic properties of the standingwave tubes with uniform,abrupt  and  tapered cross sections are investigated experimentally for comparison. Moreover, comparative experimental studies on the extremely nonlinear properties of obtained largeamplitude pure standingwave fields in these standingwave tubes are carried out. The results provide a reliable experimental basis for the final establishment of the  theory and  practical application of the nonlinear standingwave field.

    Min Qi

    Department of Physics, Honghe University, 2022

     

    1
    • 商品详情
    • 内容简介

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购