返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:
本店所有商品

  • 泛函分析讲义第2版上 张恭庆 线性泛函分析基础知识 运用泛函方法解决问题 泛函分析学习指南配套学习辅导书 北京大学店正版
  • 新商品上架
    • 作者: 张恭庆,林源渠著
    • 出版社: 北京大学出版社
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    句字图书专营店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

    商品参数
    • 作者: 张恭庆,林源渠著
    • 出版社:北京大学出版社
    • ISBN:9787301309643
    • 版权提供:北京大学出版社


    书名:泛函分析讲义(第二版)(上)

    定价:38

    出版社:北京大学出版社

    作者:张恭庆,林源渠

    出版日期:2021-05-01

    装帧:平装

    字数:275000

    开本:32开
    书号:9787301309643

    张恭庆院士亲自组织北大数学院教师团队修订本书,教材经多次集体会议讨论和打磨,力求展现适应教学与科研新形势的泛函分析教材。

    本书是两册泛函分析教材中的上册,系统地介绍了线性泛函分析的基础知识。全书共分四章:度量空间、线性算子与线性泛函、紧算子与Fredholm算子,以及广义函数与Sobolev空间。本书的主要特点是侧重于分析若干基本概念和重要理论的来源和背景,强调培养读者运用泛函方法解决问题的能力,注意介绍泛函分析理论与数学其他分支的联系。书中包含丰富的例子与应用,对于掌握基础理论有很大帮助。

    本书第二版对内容做了一定调整,如加强了对于弱收敛的介绍,将原来的紧算子与Fredholm算子一章提前等,并优化了部分证明,以更好地适应教学与科研的新形势。

    本书适于用作数学专业本科生与研究生的教材,且可供其他理工科专业师生,以及数学、物理领域科研人员和工程技术人员参考。

    为帮助读者更好地掌握泛函分析的基本内容以及解题的思路与方法,本书有配套的学习辅导书《泛函分析学习指南》(北京大学出版社),供读者选用。

     

    第一章度量空间

    1  压缩映射原理

    2  完备化

    3  列紧集

    4  赋范线性空间

    4.1  线性空间

    4.2  线性空间上的距离

    4.3  范数与Banach  空间

    4.4  赋范线性空间上的范数等价

    4.5  应用:最佳逼近问题

    4.6  有穷维B¤  空间的刻画

    4.7  商空间

    5  凸集与不动点

    5.1  定义与基本性质

    5.2  Brouwer  与Schauder  不动点定理

    5.3  应用

    6  内积空间

    6.1  定义与基本性质

    6.2  正交与正交基

    6.3  正交化与Hilbert  空间的同构

    6.4  再论最佳逼近问题

    6.5  应用:最小二乘法

    第二章线性算子与线性泛函

    1  线性算子的概念

    1.1  线性算子和线性泛函的定义

    1.2  线性算子的连续性和有界性

    2  Riesz  表示定理及其应用

    3  纲与开映射定理

    3.1  纲与纲推理

    3.2  开映射定理

    3.3  闭图像定理

    3.4  共鸣定理

    3.5  应用

    4  Hahn-Banach  定理

    4.1  线性泛函的延拓定理

    4.2  几何形式||  凸集分离定理

    4.3  应用

    5  共轭空间、弱收敛、自反空间

    5.1  共轭空间的表示及应用

    5.2  共轭算子

    5.3  弱收敛及¤  弱收敛

    5.4  弱列紧性与¤  弱列紧性

    5.5¤  弱收敛的例子

    6  线性算子的谱

    6.1  定义与例

    6.2  Gelfand  定理

    6.3  例子

    第三章紧算子与Fredholm  算子

    1  紧算子的定义和基本性质

    2  Riesz-Fredholm  理论

    3  紧算子的谱理论

    3.1  紧算子的谱

    3.2  不变子空间

    3.3¤  紧算子的结构

    4  Hilbert-Schmidt  定理

    5  对椭圆型方程的应用

    6  Fredholm  算子

    第四章广义函数与Sobolev  空间

    1  广义函数的概念

    1.1  基本空间D(-) 

    1.2  广义函数的定义和基本性质

    1.3  广义函数的收敛性

    2  B0  空间

    3  广义函数的运算

    3.1  广义微商

    3.2  广义函数的乘法

    3.3  平移算子与反射算子

    4  S0  上的Fourier  变换

    5  Sobolev  空间与嵌入定理

    习题补充提示

    索引

     

    1
    • 商品详情
    • 内容简介

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购