返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:
本店所有商品

  • Towards a Unified Fatigue Life Prediction Method for Marine
  • 新商品上架
    • 作者: 崔维成,黄小平,王芳著
    • 出版社: 浙江大学出版社有限责任公司
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    句字图书专营店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

    商品参数
    • 作者: 崔维成,黄小平,王芳著
    • 出版社:浙江大学出版社有限责任公司
    • 开本:16开
    • ISBN:9788004519629
    • 版权提供:浙江大学出版社有限责任公司

    1 Introduction
    1.1 Fatigue Problems in Marine Structures
    1.2 Current Practices of Fatigue Strength Assessments and TheirDeficiencies
    1.3 Historical Overview of Metal Fatigue
    1.4 FLP Methods
    1.4.1 CFD Theories
    1.4.2 FCP Theories
    1.5 The Layout of the Book
    References
    2 Current Understanding of Fatigue Mechanisms of Metals
    2.1 Introduction
    2.2 Different Phases of the Fatigue Life
    2.3 Crack Initiation Mechanisms for Different Metals
    2.3.1 Definition of a Crack Initiation
    2.3.2 Fatigue Crack Initiation in Slip Bands
    2.3.3 Crack Initiation Along the Grain Boundary (GB)
    2.3.4 Crack Initiation at Inclusions
    2.3.5 Slip Band and Dislocation in Single Crystal Metal
    2.3.6 Slip Band and Dislocation in Polycrystal Metal
    2.3.7 Fatigue Mechanism of Ultrafine-Grained Materials
    2.4 FCP Mechanisms
    2.4.1 Stage I FCP
    2.4.2 Stage II Crack Growth and Fatigue Striation
    2.5 Some Important Issues in Crack Growth
    2.5.1 Short Crack
    2.5.2 Crack Closure
    2.5.3 Effect of Loading Sequence
    2.5.4 Surface Effects
    2.5.5 Environmental Effects
    2.6 Fatigue Crack Growth Mechanism of Small Defects
    2.6.1 Engineering Initial Crack Size of Structures
    2.6.2 Definition of Short Crack and Long Crack
    2.6.3 Crack Growth Threshold and Intrinsic Crack Length
    2.6.4 Equivalent Crack Length for Short and Long Crack
    2.7 Summary
    References
    3 Current State-of-the-Art of UFLP
    3.1 Introduction
    3.2 Unified Approach for Three Regions of FCP
    3.3 Unified Approach to the Stress Ratio Effect or Mean Stress Effect
    3.4 Unified Approach for Long- and Physically Short-Crack Growth
    3.5 Unified Approach for Initiation and Propagation
    3.6 Unified Approach for High and Low Cycle Fatigue
    3.7 Unified Approach for Fatigue and Creep
    3.8 Basic Ideas of Our UFLP Method
    3.9 Summary
    References
    4 Basic Concepts of Fracture Mechanics
    4.1 Introduction
    4.2 Type's of Cracks
    4.3 Types of Opening Modes for a Cracked Body
    4.4 SIFs
    4.4.1 Definition
    4.4.2 Calculation Methods of SIFs
    4.4.3 Typical Examples of SIFs
    4.4.4 Plasticity Limitations of the SIFs Based on LEFM
    4.4.5 Extensions of the SIFs Based on LEFM
    4.5 Fracture Toughness
    4.5.1 Definition
    4.5.2 Testing
    4.5.3 Trends
    4.6 Crack Tip Plasticity
    4.6.1 Plastic Zone for Plane Stress
    4.6.2 Plastic Zone for Plane Strain
    4.6.3 Plastic Zone Under Real Stress State
    4.7 Summary
    References
    5 Development of a UFLP Method for Marine Structures
    5.1 Introduction
    5.2 A General Procedure for the UFLP Method
    5.2.1 The General Function Format of the Fatigue Crack Growth Rate Curve for the UFLP Method
    5.2.2 Calculation of Fatigue Life
    5.3 Development of a Unified Fatigue Crack Growth Rate Model
    5.3.1 The Crack Growth Rate Model for Constant Amplitude Loading
    5.3.2 The Improved Crack Growth Rate Model Under VA Loading
    5.3.3 Establishment of Cycle-by-Cycle Integration Procedure
    5.3.4 Discussion of Model Parameters
    5.4 Engineering Approaches to Determine the Parameters in the Improved Model
    5.4.1 General Methods to Estimate the Model Parameters
    5.4.2 Estimation Method from Crack Growth Rate Data
    5.4.3 Estimation Method from a-N Curve
    5.4.4 Estimation Method from S-N Curve
    5.4.5 Estimation Method from e-N Curve
    5.4.6 Estimation Methods from Available Static Test Properties
    5.4.7 Estimation of A and m
    5.5 Capabilities of the UFLPMethod
    5.5.1 The Quantitative Analysis of the Improved Crack Growth Rate Model
    5.5.2 Model Validation by Test
    5.6 Summary
    References
    6 Description of Fatigue Loading
    6.1 The Nature of Fatigue Loading
    6.2 Load Spectra for CFD Analysis
    6.3 Generating the Whole Life Loading History from Short Time Measurement
    6.3.1 Method for Extrapolation of a Load History
    6.3.2 Choice of Threshold Levels
    6.3.3 Examples of Extrapolation of Load Histories
    6.4 Cycle Count Methods
    6.4.1 Definitions
    6.4.2 Rainflow Cycle Counting
    6.4.3 A Practical Example
    6.5 SLHs for FCP Analysis
    6.5.1 Definition
    6.5.2 History
    6.5.3 Basis of Generation of SLHs
    6.5.4 Generation of Load-Time Histories
    6.6 Generating a Pseudo Random Loading History from a Spectra
    6.7 Summary
    References
    7 Some Applications and Demonstrations of UFLP
    7.1 Introduction
    7.2 The Fatigue Crack Growth Rate of UFLP
    7.3 FLP of Specimen with Through-Thickness Crack Under Different Fatigue Loading
    7.3.1 FLP of DI 6 Aluminum Alloy Specimens Under Different Spectrum Loading
    7.3.2 FLP of Aluminum Alloy A1 7075-T6
    7.3.3 FLP of Specimen Made of 350WT Steel Under Different Overload Ratios
    7.3.4 The Fatigue Crack Growth Prediction of Steel HTS-A Under Multi-Level Block Loading
    7.4 FLP of Cracked Deck of an Oil Tanker
    7.4.1 Geometry of the Stiffened Plate
    7.4.2 The Crack Growth Pattern in the Stiffened Plate
    7.4.3 Determination of SIFs of the Cracked Stiffened Plate by FEA
    7.4.4 SIF of the Crack in Stiffened Plate by Weld Residual Stress
    7.4.5 Fatigue Crack Growth Prediction of the Stiffened Plate
    7.5 FLP of Submarine Hull Under Different Fatigue Loading Sequence
    7.5.1 General Equations for Calculating the SIF of a Surface Crack at Welded Toe
    7.5.2 SIF of Surface Crack Caused by Weld Residual Stress at Weld Toe
    7.5.3 Fatigue Crack Growth Prediction of Surface Crack at Weld Toe of Submarine Structure
    7.6 Summary
    References
    8 Code Development Based on UFLP for Marine Structures
    8.1 Introduction
    8.2 Procedure of UFLP
    8.3 Fatigue Loading
    8.3.1 Simplified Fatigue Loading Analysis
    8.3.2 Fatigue Loading by Direct Calculation
    8.4 SIF Calculation
    8.4.1 Planar Flaws and Their Initial Size
    8.4.2 SIF Range Calculation
    8.5 Fatigue Crack Growth Law of UFLP for Marine Structural Materials
    8.5.1 Recommended Fatigue Crack Growth Material Constants for Steels in Marine Environment
    8.5.2 Simplified Fatigue Crack Growth Law and Threshold (BS7910)
    8.6 Summary
    Appendix A: SIF Solutions for Some Typical Cracks
    References
    Index 

    目前的海洋结构物设计规范由于不能考虑多个对疲劳寿命有重要影响的因素,其预报结果与实际有很大差距。下一代的疲劳寿命预报方法必须是基于裂纹扩展理论的统一方法。本专著集中介绍我们提出的疲劳寿命预报统一方法的思想、需要解决的关键技术问题以及我们已经取得的部分研究成果,并对其在工程实际问题中的应用进行演示。

    1
    • 商品详情
    • 内容简介

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购