由于此商品库存有限,请在下单后15分钟之内支付完成,手慢无哦!
100%刮中券,最高50元无敌券,券有效期7天
活动自2017年6月2日上线,敬请关注云钻刮券活动规则更新。
如活动受政府机关指令需要停止举办的,或活动遭受严重网络攻击需暂停举办的,或者系统故障导致的其它意外问题,苏宁无需为此承担赔偿或者进行补偿。
醉染图书高等工程数学9787111618461
¥ ×1
目 录前 言 章 数学建模与误差分析 11.1 数学与科学计算 11.2 数学建模及其重要意义 11.2.1 数学建模的过程 11.2.2 数学建模的一般步骤 21.. 数学建模的重要意义 31.3 数值方法与算法评价 41.4 误差的种类及其来源 61.4.1 模型误差 61.4.2 观测误差 61.4.3 截断误差 61.4.4 舍入误差 71.5 误差和相对误差 71.5.1 误差和误差限 71.5.2 相对误差和相对误差限 81.6 误差的传播与估计 91.6.1 误差传播估计的一般公式 91.6.2 误差在算术运算中的传播 111.6.3 算法误差实例分析 12习题 1 16第 2 章 城市供水量的预测模型———插值与拟合算法 182.1 城市供水量的预测问题 182.2 求未知函数近似表达式的插值法 182.2.1 求函数近似表达式的必要 12.2.2 插值多项式的存在 19. 求插值多项式的拉格朗日( Lagrange) 法 20..1 拉格朗日插值基函数 20..2 拉格朗日插值多项式 20.. 插值余项 22..4 插值误差的事后估计法 2.4 求插值多项式的牛顿法 242.4.1 向前差分与牛顿向前插值公式 242.4.2 向后差分与牛顿向后插值公式 262.4.3 差商与牛顿基本插值多项式 272.5 求插值多项式的改进算法 292.5.1 分段低次插值 292.5.2 三次样条插值 312.6 求函数近似表达式的拟合法 362.6.1 曲线拟合的二乘法 372.6.2 加权二乘法 442.6.3 利用正交函数作二乘法拟合 452.7 城市供水量预测的简单方法 472.7.1 供水量增长率估与值微分 472.7.2 利用插值多项式求导数 482.7.3 利用三次样条插值函数求导 492.7.4 城市供水量预测 50习题 2 54第 3 章 湘江流量计算问题———数值积分法 563.1 数值积分公式的构造及代数精度 563.1.1 数值求积的必要 563.1.2 构造数值求积公式的基本方法 563.1.3 求积公式的余项 573.1.4 求积公式的代数精度 573.2 数值求积的牛顿 - 柯特斯方法 583.2.1 牛顿 - 柯特斯公式 593.2.2 复合牛顿 - 柯特斯公式 603.. 误差的事后估计与步长的自动选择 633.2.4 复合梯形法的递推算式 643.3 龙贝格算法 663.3.1 龙贝格算法的基本原理 663.3.2 龙贝格算法计算公式的简化 683.4 高斯型求积公式与测量位置的优化选取 693.4.1 高斯型求积公式的定义 693.4.2 高斯型求积公式的构造与应用 703.5 湘江流量的估计 72习题 3 72第 4 章 养老保险问题———非线方程求根的数值解法 744.1 养老保险问题 744.1.1 问题的引入 744.1.2 模型分析 744.1.3 模型设 744.1.4 模型建立 744.1.5 模型求解 754.2 非线方程求根的数值方法 754.2.1 根的搜索相关定义 754.2.2 逐步搜索法 754.. 二分法 764.2.4 迭代法 774.2.5 牛顿公式 824.2.6 牛顿法的几何意义 824.2.7 牛顿法的局部收敛 34.2.8 牛顿法应用举例 844.2.9 牛顿下山法 854.2.10 弦截法与"物线法 864.2.11 多项式求值的秦九韶算法 884.2.12 代数方程的牛顿法 894.2.13 牛顿法对重根的处理 894.3 养老保险模型的求解 90习题 4 91第 5 章 小行星轨道方程计算问题———线方程组的数值解法 925.1 小行星轨道方程问题 925.1.1 问题的引入 925.1.2 模型的分析 925.1.3 模型的设 935.1.4 模型的建立 935.2 线方程组数值解法概述 935.3 直接解法 945.3.1 高斯消元法 945.3.2 矩阵的三角分解 975.3.3 高斯消元法的计算量 995.3.4 高斯主元素消元法 995.3.5 完全主元素消元法 1005.3.6 列主元消元法 1015.3.7 高斯 - 约当消元法 1035.3.8 高斯消元法的变形 1055.3.9 平方根法 1075.3.10 追赶法 1095.4 迭代法 1125.4.1 雅可比迭代法 1135.4.2 高斯 - 赛德尔迭代法 1145.4.3 迭代法的收敛 1155.4.4 超松弛迭代法 1215.5 误差分析 1245.5.1 矩阵的条件数及误差分析 1245.5.2 迭代改善法 1285.5.3 舍入误差分析 1305.6 小行星轨道方程问题的模型求解 130习题 5 131第 6 章 常微分方程数值解法 1336.1 实际问题的微分方程模型 1336.2 简单的数值方法与基本概念 1346.2.1 常微分方程初值问题 1346.2.2 欧拉法及改进的欧拉法 1356.. 截断误差与算法精度的阶 1376.3 线多步法 1406.3.1 数值积分法 1406.3.2 待定系数法 1426.4 非线单步法———龙格 - 库塔法 1446.4.1 泰勒展开法 1446.4.2 龙格 - 库塔法 1456.5 一阶方程组和高阶方程的初值问题 1506.6 常微分方程边值问题的数值解法 1516.6.1 试法 1516.6.2 差分法 153习题 6 156第 7 章 产品的次品率的推断———估计与检验 1577.1 问题的提出 1577.2 基本概念和重要结论 1577.3 估计方法 1617.3.1 点估计 1617.3.2 区间估计 163高等工程数学7.4 设检验 1657.4.1 参数设检验 1657.4.2 分布设检验 169习题 7 171第 8 章
前 言 “ 高等工程数学” 课程是中南大学面向全校各理工科硕士的数学基础课程, 共 48 学时 3学分. 本书为该课程的配套用书, 书中以数学建模思想、 方法为主线, 有机融入科学计算、应用统计、 化方的理与方法, 集科学计算方法、 现代数学、 计算机技术与实际问题求解于一体, 采用研究型教学与探索型学习相结合的编写方式, 主要讲授数学建模、 科学计算、 应用统计、 化方法的基本方法, 以实际问题为背景, 采用案例式编写方式, 渗透数学建模思想, 介绍数学建模的步骤和方法, 建立描述实际问题的数学模型, 用模型的求解引入科学计算、 应用统计、 化方法的基本知识和一般方法, 主要内容包括: 数学建模与科学计算方法的基本概念及其相互关系、 误差分析理论、 函数插值与拟合方法、 数值积分方法、 方程求解数值方法、 应用统计方法、 化方法、 以及数学建模案例分析等. 本书强调实际应用, 以学生为本, 突出实验与实践教学环节, 实现课内课外相结合,重视学生自学能力、 创新能力和课外实践能力的培养, 内容编排充分考虑学生的数学基础, 同时进一步拓展学生的数学知识面, 可以适用于不同专业和不同层次学生的教学要求.本书编写的重要目标之一是提高学生应用数学知识解决实际问题的能力旨在全面训练学生运用数学工具建立数学模型、 应用科学计算方法解决实际问题的技能与技巧, 突出学生的自学和自主实践, 提高学生的科学计算能力、 数学建模能力, 培养学生从事现代科研活动的能力和相关素质. 感谢在本书编写过程中学校有关领导给予的支持和鼓励, 感谢同行教师给出的中肯意见和建议, 感谢给予我们帮的家人和朋友们. 由于编者水平和经验有限. 书中不免有一些疏漏和不当之处, 请各位专家和广大同行批评指正. 编 者
亲,大宗购物请点击企业用户渠道>小苏的服务会更贴心!
亲,很抱歉,您购买的宝贝销售异常火爆让小苏措手不及,请稍后再试~
非常抱歉,您前期未参加预订活动,
无法支付尾款哦!
抱歉,您暂无任性付资格