由于此商品库存有限,请在下单后15分钟之内支付完成,手慢无哦!
100%刮中券,最高50元无敌券,券有效期7天
活动自2017年6月2日上线,敬请关注云钻刮券活动规则更新。
如活动受政府机关指令需要停止举办的,或活动遭受严重网络攻击需暂停举办的,或者系统故障导致的其它意外问题,苏宁无需为此承担赔偿或者进行补偿。
醉染图书TENSORFLOW深度学习(第2版 )9787564183264
¥ ×1
Preface
Chapter 1: Getting Started with Deep Learning
A soft introduction to machine learning
Supervised learning
Unbalanced data
Unsupervised learning
Reinforcement learning
What is deep learning?
Artifi neural networks
The biological neurons
The artifi neuron
How does an ANN learn?
ANNs and the backpropagation algorithm
Weight optimization
Stochastic gradient descent
Neural network architectures
Deep Neural Networks (DNNs)
Multilayer perceptron
Deep Belief Networks (DBNs)
Convolutional Neural Networks (CNNs)
AutoEncoders
Recurrent Neural Networks (RNNs)
Emergent architectures
Deep learning frameworks
Summary
Chapter 2: A First Look at TensorFlow
A general overview of TensorFlow
Whats new in TensorFlow vl.6?
Nvidia GPU support optimized
Introducing TensorFlow Lite
Eager execution
Optimized Accelerated Linear Algebra (XLA)
Installing and configuring TensorFlow
TensorFlow computational graph
TensorFlow code structure
Eager execution with TensorFIow
Data model in TensorFlow
Tensor
Rank and shape
Da ye
Variables
Fetches
Feeds and placeholders
Visualizing computations through TensorBoard
How does TensorBoard work?
Linear regression and beyond
Linear regression revisited for a real dataset
Summary
Chapter 3: Feed-Forward Neural Networks with TensorFIow
Feed-forward neural networks (FFNNs)
Feed-forward and backpropagation
Weights and biases
Activation functions
Using sigmoid
Using tanh
Using ReLU
Using softmax
Implementing a feed-forward neural network
Exploring the MNIST dataset
Softmax classifier
Implementing a multilayer perceptron (MLP)
Training an MLP
Using MLPs
Dataset description
Preprocessing
A TensorFIow implementation of MLP for client-subscription assessment
Chapter 4: Convolutional Neural Networks
Chapter 5: Optimizing TensorFIow Autoencoders
Chapter 6: Recurrent Neural Networks
Chapter 7: Heterogeneous and Distributed Computing
Chapter 8: Advanced TensorFIow Programming
Chapter 9: Recommendation Systems Using Factorization Machines
Chapter 10: Reinforcement Learning
Other Books You May Enjoy
Index
吉安卡洛?扎克尼(Giancarlo Zaccone),在并行计算和可视化方向拥有丰富经验,目前于某咨询公司担任系统和软件。
亲,大宗购物请点击企业用户渠道>小苏的服务会更贴心!
亲,很抱歉,您购买的宝贝销售异常火爆让小苏措手不及,请稍后再试~
非常抱歉,您前期未参加预订活动,
无法支付尾款哦!
抱歉,您暂无任性付资格