由于此商品库存有限,请在下单后15分钟之内支付完成,手慢无哦!
100%刮中券,最高50元无敌券,券有效期7天
活动自2017年6月2日上线,敬请关注云钻刮券活动规则更新。
如活动受政府机关指令需要停止举办的,或活动遭受严重网络攻击需暂停举办的,或者系统故障导致的其它意外问题,苏宁无需为此承担赔偿或者进行补偿。
醉染图书化方法及其 MATLAB 实现9787512427167
¥ ×1
章 概 论 1
1.1 *化问题及其分类 1
1.1.1 *化问题举例 1
1.1.2 函数优化问题 3
1.1.3 数学规划 4
1.1.4 组合优化问题 5
1.2 邻域函数与局部搜索 6
1.3 优化问题的复杂 6
1.4 优化算法发展状况 7
上 篇 经典优化方法
第2章 无约束优化方法 10
2.1 *条件 10
2.2 迭代法 10
. 收敛速度 11
2.4 终止准则 12
2.5 一维搜索 12
2.5.1 平分法 12
2.5.2 牛顿法 13
2.5.3 0.618法 14
2.5.4 抛物线法 15
2.5.5 二点三次插值法 16
2.5.6 “成功失败”法 17
2.5.7 非一维搜索 17
2.6 基本下降法 19
2.6.1 *速下降法 19
2.6.2 牛顿法 20
2.6.3 阻尼牛顿法 20
2.6.4 修正牛顿法 20
2.7 共轭方向法和共轭梯度法 21
2.7.1 共轭方向和共轭方向法 22
2.7.2 共轭梯度法
2.8 变尺度法(拟牛顿法) 24
2.8.1 对称秩1算法 24
2.8.2 DFP算法 25
2.8.3 BFGS算法 25
2.9 直接搜索法 27
2.9.1 Hook-Jeeves方法 27
2.9.2 单纯形法 29
2.9.3 Powell方法 29
2.10 算法的MATLAB实现 31
第3章 约束优化方法 36
3.1 *条件 36
3.1.1 等式约束问题的*条件 36
3.1.2 不等式约束问题的*条件 37
3.1.3 一般约束问题的*条件 37
3.2 罚函数法 38
3.2.1 外罚函数法 38
3.2.2 内点法 39
3.. 乘子法 41
3.3 可行方向法 43
3.3.1 Zoutendijk可行方向法 43
3.3.2 梯度投影法 45
3.3.3 简约梯度法 47
3.3.4 广义简约梯度法 49
3.4 次近法 50
3.4.1 二次规划的概念 50
3.4.2 牛顿拉格朗日法 51
3.4.3 SP算法 52
3.5 极大熵方法 56
3.6 算法的MATLAB实现 57
第4章 *小二乘问题 63
4.1 线*小二乘问题的数值解法 63
4.1.1 满秩线*小二乘问题 64
4.1.2 亏秩线*小二乘问题 64
4.2 非线*小二乘问题的数值解法 65
4.2.1 Gauss-Newton法 65
4.2.2 Levenberg-Marquardt方法(L-M 方法) 66
4.3 算法的MATLAB实现 67
第5章 线规划 71
5.1 线规划的标准形式 71
5.2 线规划的基本定理 72
5.3 单纯形法 73
5.3.1 基本单纯形法 73
5.3.2 单纯形法的改进 77
5.4 线规划问题的对偶问题 78
5.4.1 对偶单纯形法 79
5.4.2 对偶线规划的应用 81
5.5 算法的MATLAB实现 84
第6章 动态规划 91
6.1 理论基础 91
6.2 *化原理和基本方程 94
6.3 动态规划的建模方法及步骤 96
6.4 函数空间迭代法和策略空间迭代法 98
6.4.1 函数空间迭代法 99
6.4.2 策略空间迭代法 100
6.5 动态规划与静态规划的关系 103
6.6 算法的MATLAB实现 104
第7章 整数规划 112
7.1 理论基础 112
7.1.1 整数线规划的标准形式 112
7.1.2 整数线规划的求解 112
7.1.3 松 驰 113
7.1.4 分 解 113
7.2 分支定界法 114
7.3 割平面法 115
7.4 隐枚举法 118
7.4.1 0-1规划的标准形式 118
7.4.2 隐枚举法的基本步骤 119
7.5 匈牙利法 120
7.5.1 指派问题的标准形式 120
7.5.2 匈牙利法的基本步骤 121
7.6 算法的MATLAB实现 1
第8章 二次规划问题 128
8.1 等式约束二次规划的解法 128
8.1.1 零空间方法 128
8.1.2 拉格朗日乘子法 129
8.2 一般凸二次规划的有效集方法 130
8.3 算法的MATLAB实现 132
第9章 多目标规划 134
9.1 多目标规划的概念 134
9.2 有效解、弱有效解和*有效解 135
9.3 处理多目标规划问题的一些方法 136
9.3.1 评价函数法 136
9.3.2 约束法 140
9.3.3 逐步法 140
9.3.4 分层求解法 141
9.3.5 图解法 143
9.4 权系数的确定方法 144
9.4.1 α 方法 144
9.4.2 老手法 144
9.4.3 *小平方法 145
9.5 目标规划法 145
9.5.1 目标规划模型 145
9.5.2 目标点法 148
9.5.3 目标规划单纯形法 149
9.6 算法的MATLAB实现 153
0章 图 论 161
10.1 图的理论基础 161
10.1.1 图的基本概念 161
10.1.2 图的矩阵表示 165
10.1.3 图论的基本质和定理 166
10.2 *短路 166
10.2.1 Dijkstra算法 167
10.2.2 Warshall-Floyd算法 167
10.. 求*可靠路的算法 168
10.2.4 求期望*可靠容量路 168
10.3 树 169
10.3.1 求*小树的Kruskal算法 170
10.3.2 求*小树的Prim算法 171
10.4 欧拉(Euler)图和Hamilton图 171
10.4.1 Euler图 171
10.4.2 中国邮递员问题 172
10.4.3 Hamilton图 173
10.4.4 旅行售货员问题 173
10.5 匹配问题及其算法 174
10.5.1 匹配、完善匹配、*匹配 174
10.5.2 匹配的基本定理 174
10.5.3 人员分配问题 175
10.5.4 *分派问题 176
10.6 网络流的算法 177
10.6.1 网络和流 177
10.6.2 割 178
10.6.3 网络的*流问题及Ford-Fulkerson算法 178
10.7 *小费用流 179
10.7.1 *小费用流问题 180
10.7.2 uscr-Gowan迭代算法 181
10.8 图的染色 182
10.8.1 顶点染色及其算法 182
10.8.2 边染色及其算法 183
10.9 算法的MATLAB实现 183
下 篇 现代智能优化算法
1章 进化算法 199
11.1 进化算法概述 199
11.2 遗传算法 200
11.2.1 遗传算法的基本概念 201
11.2.2 遗传算法的分析 203
11.. 遗传算子 205
11.2.4 控制参数的选择 207
11.2.5 简单遗传算法的改进 208
11.3 进化规划算法 210
11.3.1 进化规划算法算子 211
11.3.2 进化算法的改进算法 212
11.3.3 进化规划算法的特点 214
11.4 进化策略算法 215
11.4.1 进化策略算法的基本流程 215
11.4.2 进化策略算法的构成要素 215
11.5 进化规划与进化策略的关系 217
11.6 差分进化计算 217
11.6.1 差分进化计算的基本流程 218
11.6.2 差分进化计算的构成要素 218
11.6.3 差分进化计算的特点 219
11.7 Memetic算法 220
11.7.1 基本概念 220
11.7.2 Memetic算法的基本流程 221
11.7.3 Memetic算法的要点 222
11.7.4 Memetic算法的优点 222
11.8 算法的MATLAB实现 2
2章 模拟退火算法 5
12.1 固体退火与模拟退火算法 5
12.1.1 固体退火过程和Metropolis准则 5
12.1.2 模拟退火算法的基本过程
12.2 模拟退火算法的控制参数
1. 模拟退火算法的改进
12.4 算法的MATLAB实现 240
3章 禁忌算法 245
13.1 禁忌搜索 245
13.1.1 禁忌搜索示例 245
13.1.2 禁忌算法的流程 247
13.1.3 禁忌算法的特点 247
13.2 禁忌算法的关键参数和操作 248
13.3 算法的MATLAB实现 250
4章 蚁群算法 255
14.1 蚂蚁系统模型 255
14.1.1 基本概念 255
14.1.2 蚂蚁系统的基本模型 256
14.1.3 蚁密系统、蚁量系统和蚁周系统 257
14.1.4 蚁群算法的特点 258
14.2 蚁群算法的参数分析 258
14.3 蚁群算法的改进 259
14.3.1 带精英策略的蚂蚁系统 259
14.3.2 基于优化排序的蚂蚁系统 259
14.3.3 蚁群系统 260
14.3.4 **小蚂蚁系统 261
14.3.5 **差蚂蚁系统 262
14.3.6 自适应蚁群算法 263
14.4 算法的MATLAB实现 264
5章 粒子群算法 269
15.1 粒子群算法的基本原理 269
15.2 全局模式与局部模式 270
15.3 改进的粒子群算法 271
15.3.1 带活化因子的粒子群算法 271
15.3.2 动态自适应惯粒子群算法 272
15.3.3 自适应随机惯权重粒子群算法 273
15.4 粒子群算法的特点 274
15.5 算法的MATLAB实现 274
6章 人工鱼群算法 279
16.1 人工鱼群算法的基本原理 279
16.2 人工鱼的结构模型 279
16.3 人工鱼的四种基本行为算法描述 280
16.4 人工鱼群算法流程 281
16.5 各种参数对算法收敛能的影响 283
16.6 人工鱼群算法的改进 285
16.7 全局人工鱼群算法 287
16.8 算法的MATLAB实现 289
7章 混合蛙跳算法 294
17.1 基本原理 294
17.2 基本术语 294
17.3 算法的基本流程及算子 295
17.4 算法控制参数的选择 297
17.5 混合蛙跳算法的改进 298
17.6 算法的MATLAB实现 300
8章 量子遗传算法 302
18.1 量子计算的基础知识 302
18.2 量子计算 303
18.3 量子遗传算法的流程 306
18.4 量子遗传算法的控制参数 308
18.5 量子遗传算法的改进 309
18.6 算法的MATLAB实现 311
9章 人工蜂群算法 314
19.1 自然界中的蜂群 314
19.2 人工蜂群算法的基本原理 316
19.3 人工蜂群算法的流程 317
19.4 算法控制参数 319
19.5 人工蜂群算法的改进 319
19.6 算法的MATLAB实现 321
第20章 混沌优化算法 325
20.1 混沌优化的概念和原理 325
20.1.1 混沌的发展 325
20.1.2 混沌的定义及其特征 326
20.2 混沌优化 327
20.2.1 混沌优化方法 328
20.2.2 混沌优化算法的改进 329
20.3 算法的MATLAB实现 331
2章 人工免疫算法 333
21.1 人工免疫算法概述 333
21.1.1 生物免疫系统 333
21.1.2 生物免疫基本原理 334
21.1.3 人工免疫系统及免疫算法 336
21.1.4 人工免疫算法与遗传算法的比较 340
21.2 免疫遗传算法 341
21.3 免疫规划算法 342
21.4 免疫策略算法 343
21.5 基于动态疫苗提取的免疫遗传算法 344
21.6 免疫克隆选择算法 346
21.7 算法的MATLAB实现 348
第22章 细菌觅食算法 354
22.1 大肠杆菌的觅食行为 354
22.2 细菌觅食算法的基本原理 354
22.2.1 算法的主要步骤与流程 356
22.2.2 算法参数的选取 358
2. 细菌觅食算法的改进 359
22.4 算法的MATLAB实现 362
第章 猫群算法 366
.1 猫群算法的基本思想 366
.1.1 基本术语 367
.1.2 基本流程 368
.2 控制参数的选择 369
. 猫群算法与粒子群算法的比较 369
.4 猫群算法的改进 370
.5 算法的MATLAB实现 370
第24章 神经网络与神经网络优化算法 373
24.1 人工神经网络的基本概念 373
24.1.1 人工神经元 373
24.1.2 传递函数 373
24.2 神经网络的模型 374
24.2.1 单层感知机 374
24.2.2 多层感知机 374
24.. 径向基函数神经网络 377
24.2.4 自组织竞争人工神经网络 378
24.2.5 对向传播神经网络 379
24.2.6 反馈型神经网络 381
24.3 神经网络与优化问题 383
24.3.1 求解优化问题的神经网络方法 384
24.3.2 求解组合优化问题的神经网络方法 386
24.4 算法的MATLAB实现 388
第25章 群智能优化算法 392
25.1 群智能概述 392
25.2 人工萤火虫群优化算法 395
25.3 蝙蝠算法 397
25.4 果蝇优化算法 399
25.5 生物地理优化算法 400
25.6 入侵野草优化算法 403
25.7 引力搜索算法 404
25.8 竞选算法 407
25.9 人工植物优化算法 410
25.10 文化算法 412
25.11 和声搜索算法 418
25.12 灰狼优化算法 420
25.13 布谷鸟搜索算法 422
25.14 化学反应优化算法 4
25.15 算法的MATLAB实现 426
第26章 混合优化算法 433
26.1 混合优化策略 433
26.1.1 算法流程要素433
26.1.2 混合优化策略的关键问题 434
26.2 优化算法的能评指标 435
26.3 混合算法的统一结构 436
26.4 混合优化策略的应用 438
26.4.1 遗传算法模拟退火算法的混合优化策略 438
26.4.2 基于模拟退火单纯形算法的混合策略 440
26.4.3 基于混合策略的TSP优化 442
26.4.4 基于混合策略的神经网络权值学习 443
26.5 混合优化算法的发展趋势 446
26.6 算法的MATLAB实现 446
参考文献 456《*化方法及其 MATLAB 实现》囊括了现有的绝大多数优化算法及其MATLAB实现。程序代码可扫描二维码下载下载,也可登录MATLAB中文论坛该书版块下载。
优化技术是一种以数学为基础,用于求解各种工程问题优化解的应用技术。本书较为系统地介绍了*化技术的基本理论和方法及其现有绝大多数优化算法的MATLAB程序实现。
《*化方法及其 MATLAB 实现》分上、下两篇,其中,上篇主要介绍经典优化算法,如各种无约束优化方法、各种约束优化方法、各种规划算法、图论等;下篇主要介绍诸如遗传算法、粒子群等多种现代优化算法,特别是群智能优化算法的基本理论、实现技术以及算法融合方法。本书既注重计算方法的实用,又有一定的理论分析,对于每种算法都配有丰富的例题及MATLAB程序,可供学习者使用。
《*化方法及其 MATLAB 实现》既可作为高等院校数学与应用数学、信息与计算科学、统计学、算学、运筹学、控制论等与优化技术相关的专业,以及地质、水利、化学和环境等专业优化技术教学的生或的教材或教学参考用书,也可作为对*化理论与算法感兴趣的教师与工程技术人员的参考用书。亲,大宗购物请点击企业用户渠道>小苏的服务会更贴心!
亲,很抱歉,您购买的宝贝销售异常火爆让小苏措手不及,请稍后再试~
非常抱歉,您前期未参加预订活动,
无法支付尾款哦!
抱歉,您暂无任性付资格