返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:
本店所有商品

  • 醉染图书LED封装与应用中的自由曲面光学技术9787124978
  • 正版全新
    • 作者: 王恺 等著 | 王恺 等编 | 王恺 等译 | 王恺 等绘
    • 出版社: 化学工业出版社
    • 出版时间:2020-04-01
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    醉染图书旗舰店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品参数
    • 作者: 王恺 等著| 王恺 等编| 王恺 等译| 王恺 等绘
    • 出版社:化学工业出版社
    • 出版时间:2020-04-01
    • 版次:1
    • 印次:1
    • 字数:744000
    • 页数:355
    • 开本:16开
    • ISBN:9787122334978
    • 版权提供:化学工业出版社
    • 作者:王恺 等
    • 著:王恺 等
    • 装帧:精装
    • 印次:1
    • 定价:298.00
    • ISBN:9787122334978
    • 出版社:化学工业出版社
    • 开本:16开
    • 印刷时间:暂无
    • 语种:英语
    • 出版时间:2020-04-01
    • 页数:355
    • 外部编号:1202058714
    • 版次:1
    • 成品尺寸:暂无

    Preface xi

    1 Introduction 1

    1.1 Overview of LED Lighting 1

    1.2 Development Trends of LED Packaging and Applications 5

    1.3 Three Key Issues of Optical Design of LED Lighting 7

    1.3.1 System Luminous Efficiency 7

    1.3.2 Controllable Light Pattern 7

    1.3.3 Spatial Color Uniformity 8

    1.4 Introduction of Freeform Optics 10

    References 12

    2 Review of Main Algorithms of Freeform Optics for LED Lighting 15

    2.1 Introduction 15

    2.2 Tailored Design Methd 6

    . SMS Design Methd 7

    2.4 Light Energy Mapping Design Methd 8

    2.5 Generalized Functional Design Methd 9

    2.6 Design Method for Uniform Illumination with Multiple Sources 22

    References 22

    3 Basic Algorithms of Freeform Optics for LED Lighting 25

    3.1 Introduction 25

    3.2 Circularly Symmetrical Freeform Lens–Point Source 25

    3.2.1 Freeform Lens for Large Emitting Angles 26

    3.2.1.1 Step 1. Establish a Light Energy Mapping Relationship between the Light Source and Target 27

    3.2.1.2 Step 2. Construct a Freeform Lens 31

    3.2.1.3 Step 3. Validation and Optimization 33

    3.2.2 TIR-Freeform Lens for Small Emitting Angle 33

    3.. Circularly Symmetrical Double Surfaces Freeform Lens 39

    3.3 Circularly Symmetrical Freeform Lens – Extended Source 42

    3.3.1 Step 1. Construction of a Point Source Freeform Lens 45

    3.3.2 Step 2. Calculation of Feedback Optimization Ratios 45

    3.3.3 Step 3. Grids Redivision of the Target Plane and Light Source 46

    3.3.4 Step 4. Rebuild the Energy Relationship between the Light Source and Target Plane 46

    3.3.5 Step 5. Construction of a Freeform Lens for an Extended Source 47

    3.3.6 Step 6. Ray-Tracing Simulation and Feedback Reversing Optimization 47

    3.4 Noncircularly Symmetrical Freeform Lens–Point Source 48

    3.4.1 Discontinuous Freeform Lens Algorithm 49

    3.4.1.1 Step 1. Establishment of a Light Energy Mapping Relationship 49

    3.4.1.2 Step 2. Construction of the Lens 52

    3.4.1.3 Step 3. Validation of Lens Design 55

    3.4.2 Continuous Freeform Lens Algorithm 55

    3.4.2.1 Radiate Grid Light Energy Mapping 57

    3.4.2.2 Rectangular Grid Light Energy Mapping 58

    3.5 Noncircularly Symmetrical Freeform Lens–Extended Source 60

    3.5.1 Step 1. Establishment of the Light Energy Mapping Relationship 61

    3.5.2 Step 2. Construction of a Freeform Lens 61

    3.5.3 Step 3. Validation of Lens Design 62

    3.6 Reversing the Design Method for Uniform Illumination of LED Arrays 63

    3.6.1 Reversing the Design Method of LC for Uniform Illumination 64

    3.6.2 Algorithm of a Freeform Lens for the Required LC 66

    References 68

    4 Application-Specific LED Package Integrated with a Freeform Lens 71

    4.1 Application-Specific LED Package (ASLP) Design Concept 71

    4.2 ASLP Single Module 72

    4.2.1 Design Method of a Compact Freeform Lens 72

    4.2.2 Design of the ASLP Module 73

    4.2.2.1 Optical Modeling 73

    4.2.2.2 Design of a Compact Freeform Lens 73

    4.2.. ASLP Module 74

    4.. Numerical Analyses and Tolerance Analyses 76

    4...1 Numerical Simulation and Analyses 76

    4...2 Tolerance Analyses 77

    4... Experiments 81

    4.3 ASLP Array Module 85

    4.4 ASLP System Integrated with Multiple Functions 87

    4.4.1 Optical Design 89

    4.4.1.1 Problem Statement 89

    4.4.1.2 Optical Modeling 89

    4.4.1.3 Design of a Freeform Lens 90

    4.4.1.4 Simulation of Lighting Performance 91

    4.4.2 Thermal Management 91

    4.4.3 ASLP Module 94

    References 96

    5 Freeform Optics for LED Indoor Lighting 99

    5.1 Introduction 99

    5.2 A Large-Emitting-Angle Freeform Lens with a Small LED Source 99

    5.2.1 A Freeform Lens for a Philip Lumileds K2 LED 100

    5.2.2 Freeform Lens for a CREE XLamp XR-E LED 103

    5.3 A Large-Emitting-Angle Freeform Lens with an Extended Source 108

    5.3.1 Target Plane Grids Optimization 108

    5.3.2 Light Source Grids Optimization 108

    5.3.3 Target Plane and Light Source Grids Coupling Optimization 109

    5.4 A Small-Emitting-Angle Freeform Lens with a Small LED Source 110

    5.5 A Double-Surface Freeform Lens for Uniform Illumination 113

    5.5.1 Design Example 1 114

    5.5.2 Design Example 2 115

    5.5.3 Design Example 3 116

    5.6 A Freeform Lens for Uniform Illumination of an LED High Bay Lamp Array 117

    5.6.1 Design Concept 117

    5.6.2 Design Case 118

    5.6.2.1 Algorithms and Design Procedure 118

    5.6.2.2 Optical Structures 119

    5.6.. Monte Carlo Optical Simulation 121

    References 124

    6 Freeform Optics for LED Road Lighting 125

    6.1 Introduction 125

    6.2 The Optical Design Concept of LED Road Lighting 126

    6.2.1 Illuminance 127

    6.2.2 Luminance 128

    6.. Glare RestrictionThreshold Increment 129

    6.2.4 Surrounding Rati 30

    6.3 Discontinuous Freeform Lenses (DFLs) for LED Road Lighting 131

    6.3.1 Design of DFLs for Rectangular Radiation Patterns 131

    6.3.1.1 Step 1. Optical Modeling for an LED 131

    6.3.1.2 Step 2. Freeform Lens Design 133

    6.3.2 Simulation Illumination Performance and Tolerance Analyses 134

    6.3.3 Experimental Analyses 139

    6.3.4 Effects of Manufacturing Defects on the Lighting Performance 139

    6.3.4.1 Surface Morphology 144

    6.3.4.2 Optical Performance Testing 146

    6.3.4.3 Analysis and Discussion 150

    6.3.5 Case Study–LED Road Lamps Based on DFLs 152

    6.4 Continuous Freeform Lens (CFL) for LED Road Lighting 154

    6.4.1 CFL Based on the Radiate Grid MappingMethd 54

    6.4.2 CFL Based on the Rectangular Grid MappingMethd 54

    6.4.3 Spatial Color Uniformity Analyses of a Continuous Freeform Lens 158

    6.5 Freeform Lens for an LED Road Lamp with Uniform Luminance 164

    6.5.1 Problem Statement 164

    6.5.2 Combined Design Method for Uniform Luminance in Road Lighting 166

    6.5.3 Freeform Lens Design Method for Uniform-Luminance Road Lighting 171

    6.6 Asymmetrical CFLs with a High Light Energy Utilization Rati 74

    6.7 Moarzed LED Road Lamp Based on Freeform Optics 178

    References 178

    7 Freeform Optics for a Direct-Lit LED Backlighting Unit 181

    7.1 Introduction 181

    7.2 Optical Design Concept of a Direct-Lit LED BLU 183

    7.3 Freeform Optics for Uniform Illumination with a Large DHR 186

    7.4 Freeform Optics for Uniform Illumination with an Extended Source 191

    7.4.1 Algorithm of a Freeform Lens for Uniform Illumination with an Extended Source 194

    7.4.2 Design Method of a Freeform Lens for Extended Source Uniform Illumination 195

    7.4.2.1 Step 1. Calculation of FORs 196

    7.4.2.2 Step 2. Energy Grids Division for an Extended Source 197

    7.4.. Step 3. Construction of a Freeform Lens for an Extended Source 198

    7.4.2.4 Step 4. Ray-Tracing Simulation and Circulation Feedback Optimization 198

    7.4.3 Freeform Lenses for Direct-Lit BLUs with an Extended Source 198

    7.5 Petal-Shaped Freeform Optics for High-System-Efficiency LED BLUs 203

    7.5.1 Optical Co-design from the System Level of BLUs 203

    7.5.2 Optimization of a High-Efficiency LC for BEFs 203

    7.5.3 Petal-Shaped Freeform Lenses, and ASLPs for High-Efficiency BLUs 206

    7.6 BEF-Adaptive Freeform Optics for High-System-Efficiency LED BLUs 210

    7.6.1 Design Concept and Method 210

    7.6.1.1 Step 1. Finding Out the Best Incident Angle Range 211

    7.6.1.2 Step 2. Redistribution of Original Output LC 212

    7.6.1.3 Step 3. Construction of a BEF-Adaptive Lens 213

    7.6.2 BEF-Adaptive Lens Design Case 213

    7.6.2.1 Basic Setup of a BLU 213

    7.6.2.2 Design Results and Optical Validation 214

    7.7 Freeform Optics for Uniform Illumination with Large DHR, Extended Source and Near Field 219

    7.7.1 Design Method 220

    7.7.1.1 F of Single Extended Source 220

    7.7.1.2 F of Freeform Lens 221

    7.7.1.3 Construction of Freeform Lens 222

    7.7.1.4 Ray Tracing Simulation and Verification 2

    7.7.2 Design Example 2

    References 228

    8 Freeform Optics for LED Automotive Headlamps 1

    8.1 Introduction 1

    8.2 Optical Regulations of Low-Beam and High-Beam Light 1

    8.2.1 Low-Beam 1

    8.2.2 High-Beam 2

    8.. Color Range 2

    8.3 Application-Specific LED Packaging for Headlamps 4

    8.3.1 Small étendue 4

    8.3.2 High Luminance 5

    8.3.3 Strip Shape Emitter with a Sharp Cutoff

    8.3.4 Small Thermal Resistance of Packaging

    8.3.5 ASLP Design Case

    8.3.6 Types of LED Packaging Modules for Headlamps

    8.4 Freeform Lens for High-Efficiency LED Headlamps

    8.4.1 Introduction

    8.4.2 Freeform Lens Design Methods

    8.4.2.1 Design of Collection Optics 240

    8.4.2.2 Design of Refraction Optics 241

    8.4.3 Design Case of a Freeform Lens for Low-Beam and High-Beam 243

    8.4.3.1 Design of a Low-Beam Lens 244

    8.4.3.2 Design of a High-Beam Lens 246

    8.4.4 Design Case of a Freeform Lens for a Low-Beam Headlamp Module 249

    8.5 Freeform Optics Integrated PES for an LED Headlamp 250

    8.6 Freeform Optics Integrated MR for an LED Headlamp 255

    8.7 LED Headlamps Based on Both PES and MR Reflectors 260

    8.8 LED Module Integrated with Low-Beam and High-Beam 263

    References 266

    9 Freeform Optics for Emerging LED Applications 269

    9.1 Introduction 269

    9.2 Total Internal Reflection (TIR)-Freeform Lens for an LED Pico-Projector 269

    9.2.1 Introduction 269

    9.2.2 Problem Statement 271

    9.2.2.1 Defect of a Refracting Freeform Surface for Illumination with a Small Output Angle 271

    9.2.2.2 Problem of an Extended Light Source 272

    9.. Integral Freeform Illumination Lens Design Based on an LED’s Light Source 273

    9...1 Freeform TIR Lens Design 273

    9...2 Top Surface Design of the TIR Lens 273

    9.2.4 Optimization of the Integral Freeform Illumination Lens 279

    9.2.5 Tolerance analysis 280

    9.2.6 LED Pico-Projector Based on the Designed Freeform Lens 281

    9.3 Freeform Lens Array Optical System for an LED Stage Light 283

    9.3.1 Design of a One-Dimensional Beam Expander Based on a Freeform Lens Array 285

    9.3.1.1 Part 1. Gridding of the One-Dimensional Target Plane 285

    9.3.1.2 Part 2. Algorithm of a One-Dimensional Freeform Microstructure 285

    9.3.1.3 Part 3. Optical Simulation Results of the Optical System 287

    9.3.2 Design of a Rectangular Beam Expander Based on a Freeform Lens Array 287

    9.3.2.1 Part 1. Algorithm of the Rectangular Freeform Structure 288

    9.3.2.2 Part 2. Optical Simulation Results of the Optical System 291

    9.4 Freeform Optics for a LED Airport Taxiway Light 291

    9.4.1 Introduction 290

    9.4.2 Requirement Statement 291

    9.4.3 Design Method of an Optical System 291

    9.4.4 Simulation and Optimization 293

    9.4.5 Tolerance Analysis 294

    9.4.6 Design of an LED Taxiway Centerline Lamp 295

    9.5 Freeform Optics for LED Searchlights 297

    9.5.1 Introduction 297

    9.5.2 Freeform Lens Design of a Small Divergence Angle 298

    9.5.3 Improving Methods and Tolerance Analysis 301

    9.5.3.1 The Design of a Freeform Lens and Parabolic Reflector 301

    9.5.3.2 Tolerance Analysis 304

    References 305

    10 Freeform Optics for LED Lighting with High Spatial Color Uniformity 307

    10.1 Introduction 307

    10.2 Optical Design Concept 308

    10.3 Freeform Lens Integrated LED Module with a High SCU 309

    10.3.1 Optical Design, Molding, and Simulation 309

    10.3.2 Tolerance Analyses 312

    10.3.3 Secondary Freeform Lens for a High SCU 313

    10.3.4 Experimental Analyses 314

    10.4 TIR-Freeform Lens Integrated LED Module with a High SCU 3

    10.4.1 Introduction 3

    10.4.2 Design Principle for a High SCU 325

    10.4.3 Design Method of the Modified TIR-Freeform Lens 325

    10.4.4 Optimization Results and Discussions 328

    References 332

    Appendix: Codes of Basic Algorithms of Freeform Optics for LED Lighting 335

    Index 351

    王恺,广东昭信光电科技有限公司,副总经理,,王恺,2011年于华中科技大学&武汉光电实验室,获工学博士,主要从事大功率LED优选封装与应用技术研究,包括基于自由曲面光学的应导向型封装ASLP、晶圆级封装WLP、系统集成封装SiP等。所研发的新型自由曲面光学算法以及应用导向型LED封装为高品质LED照明提供了一套有效的光学解决方案,在LED封装、背光、汽车前大灯、道路照明等领域得到成功应用,引起靠前相关研究机构的关注(如Philips欧洲研究院、韩国LIFTRC研究中心等)。2009至2011年兼任广东昭信光电科技有限公司研发主管一职。2011年至今担任广东昭信光电科技有限公司副总经理,负责新型LED封装及特种照明应用产品的研发工作,包括高光效大功率LED(>150 lm/W)、高亮度车灯专用LED模组、低成本荧光粉保形涂覆技术、LED标准光组件等,具有将研究成果成功转化为产品并盈利的产业经验。

    1. 本书综述了现有的主流自由曲面光学算法,进而引出并且系统介绍一系列新的针对LED照明的自由曲面光学算法,包括出自由曲面反器、各类圆对称自由曲面透镜与非圆对称自由曲面透镜。大多数算法都得到了工业界的验。
    2. 本书从自由曲面光学新算法到详尽的设计方法都做了详尽的论述,同时也包括了优选的LED光学设计与新的案例分析。应用案例涉及:LED封装与应用,包括集成自由曲面透镜的应用导向型LED封装、LED室内照明自由曲面光学、LED道路照明、大尺寸LED背光、LED汽车前大灯等领域。
    3. 本书系统地介绍许多LED照明自由曲面光学算法与设计,比如LED聚光灯的TIR自由曲面透镜设计,LED路灯高空间颜色均匀度与高光能利用率的非对称自由曲面透镜设计,针对直下式大尺寸LED背光的应用导向型封装集成花瓣式自由曲面透镜设计,LED近光灯菲涅耳自由曲面透镜设计,高空间颜色均匀度自由曲面透镜设计等等。
    4. 本书在附录提基本的自由曲面光学算法计算代码供读者参阅。

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购