返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:
本店所有商品

  • 全新正版流式系统()(英文版)9787564183677东南大学出版社
    • 作者: Tyler Akidau,Slava C著 | Tyler Akidau,Slava C编 | Tyler Akidau,Slava C译 | Tyler Akidau,Slava C绘
    • 出版社: 东南大学出版社
    • 出版时间:2019-06-01
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    如梦图书专营店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

    商品参数
    • 作者: Tyler Akidau,Slava C著| Tyler Akidau,Slava C编| Tyler Akidau,Slava C译| Tyler Akidau,Slava C绘
    • 出版社:东南大学出版社
    • 出版时间:2019-06-01
    • 版次:1
    • 字数:431千字
    • 页数:18329
    • ISBN:9787564183677
    • 版权提供:东南大学出版社
    • 作者:Tyler Akidau,Slava C
    • 著:Tyler Akidau,Slava C
    • 装帧:平装
    • 印次:暂无
    • 定价:128.00
    • ISBN:9787564183677
    • 出版社:东南大学出版社
    • 开本:暂无
    • 印刷时间:暂无
    • 语种:中文
    • 出版时间:2019-06-01
    • 页数:18329
    • 外部编号:30642902
    • 版次:1
    • 成品尺寸:暂无

    Preface Or: What Are You Getting Yourself Into Here?
    Part Ⅰ.The Beam Model
    1.Streaming 101
    Terminology: What Is Streaming?
    On the Greatly Exaggerated Limitations of Streaming
    Event Time Versus Processing Time
    Data Processing Patterns
    Bounded Data
    Unbounded Data: Batch
    Unbounded Data: Streaming
    Summary
    2.The What, Where, When, and How of Data Processing
    Roadmap
    Batch Foundations: What and Where
    What: Transformations
    Where: Windowing
    Going Streaming: When and How
    When: The Wonderful Thing About Triggers Is Triggers Are Wonderful Things!
    When: Watermarks
    When: Early/On-Time~Late Triggers FTWI
    When: Allowed Lateness (i.e., Garbage Collection
    How: Accumulation
    Summary
    3.Watermarks
    Definition
    Source Watermark Creation
    Perfect Watermark Creation
    Heuristic Watermark Creation
    Watermark Propagation
    Understanding Watermark Propagation
    Watermark Propagation and Output Timestamps
    The Tricky Case of Overlapping Windows
    Percentile Watermarks
    Processing-Time Watermarks
    Case Studies
    Case Study: Watermarks in Google Cloud Dataflow
    Case Study: Watermarks in Apache Flink
    Case Study: Source Watermarks for Google Cloud Pub/Sub
    Summary
    4.Advanced Windowing
    When/Where: Processing-Time Windows
    Event-Time Windowing
    Processing-Time Windowing via Triggers
    Processing-Time Windowing via Ingress Time
    Where: Session Windows
    Where: Custom Windowing
    Variations on Fixed Windows
    Variations on Session Windows
    One Size Does Not Fit All
    Summary
    5.Exactly-Once and Side Effects
    Why Exactly Once Matters
    Accuracy Versus Comleess
    Side Effects
    Problem Definition
    Ensuring Exactly Once in Shuffle
    Addressing Determinism
    Performance
    Graph Optimization
    Bloom Filters
    Garbage Collection
    Exactly Once in Sources
    Exactly Once in Sinks
    Use Cases
    Example Source: Cloud Pub/Sub
    Example Sink: Files
    Example Sink: Google Bigery
    Other Systems
    Apache Spark Streaming
    Apache Flink
    Summary
    Part Ⅱ.Streams and Tables
    6.Streams and Tables
    Stream-and-Table Basics Or: a Special Theory of Stream and Table Relativity
    Toward a General Theory of Stream and Table Relativity
    Batch Processing Versus Streams and Tables
    A Streams and Tables Analysis of MapReduce
    Reconciling with Batch Processing
    What, Where, When, and How in a Streams and Tables World
    What: Transformations
    Where: Windowing
    When: Triggers
    How: Accumulation
    A Holistic View Of Streams and Tables in the Beam Model
    A General Theory of Stream and Table Relativity
    Summary
    7.The Practicalities of Persistent State
    Motivation
    The Inevitability of Failure
    Correctness and Efficiency
    Implicit State
    Raw Grouping
    Incremental Combining
    Generalized State
    Case Study: Conversion Attribution
    Conversion Attribution with Apache Beam
    Summary
    8.Streaming SL
    What Is Streaming SL?
    Relational Algebra
    Time-Varying Relations
    Streams and Tables
    Looking Backward: Stream and Table Biases
    The Beam Model: A Stream-Biased Approach
    The SL Model: A Table-Biased Approach
    Looking Forward: Toward Robust Streaming SL
    Stream and Table Selection
    Temporal Operators
    Summary
    9.Streaming Joins
    All Your loins Are Belong to Streaming
    Unwindowed loins
    FULL OUTER
    LEFT OUTER
    RIGHT OUTER
    INNER
    ANTI
    SEMI
    Windowed loins
    Fixed Windows
    Temporal Validity
    Summary
    10.The Evolution of Large-Scale Data Processing
    MapReduce
    Hadoop
    Flume
    Storm
    Spark
    MillWheel

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购