新春将至,本公司假期时间为:2025年1月23日至2025年2月7日。2月8日订单陆续发货,期间带来不便,敬请谅解!
由于此商品库存有限,请在下单后15分钟之内支付完成,手慢无哦!
100%刮中券,最高50元无敌券,券有效期7天
活动自2017年6月2日上线,敬请关注云钻刮券活动规则更新。
如活动受政府机关指令需要停止举办的,或活动遭受严重网络攻击需暂停举办的,或者系统故障导致的其它意外问题,苏宁无需为此承担赔偿或者进行补偿。
全新正版移动云环境下的可信计算理论9787030703491科学出版社
¥ ×1
新春将至,本公司假期时间为:2025年1月23日至2025年2月7日。2月8日订单陆续发货,期间带来不便,敬请谅解!
目录 前言 章 绪论 1 1.1 移动云计算概述 1 1.1.1 移动云计算的概念 1 1.1.2 移动云计算的模式类型 2 1.1.3 移动云计算的发展 3 1.1.4 移动云计算的挑战 5 1.2 可信计算概述 5 1.2.1 可信计算的起源 5 1.2.2 可信计算的发展 6 1.. 可信计算的应用 6 1.3 移动云环境下的可信问题 8 1.4 本章小结 10 参考文献 10 第2章 基于自适应编码的用户正常行为模式挖掘方法 14 2.1 引言 14 2.2 相关理论 15 2.2.1 遗传算法 15 2.2.2 自律计算 18 . 用户时序行为的用户-时序-操作形式化描述 20 ..1 用户时序行为结构化定义 20 ..2 用户时序行为序列编码结构 22 2.4 用户正常行为模式挖掘过程 2.4.1 选择 2.4.2 交叉 25 2.4.3 变异 26 2.4.4 算法伪代码 27 2.5 实验及结果分析 28 2.5.1 环境 28 2.5.2 结果 28 2.6 本章小结 30 参考文献 30 第3章 基于神经网络聚类的用户异常行为分析方法 3 .1 引言 3 .2 用户异常行为分析的系统模型 3 .2.1 SVD模型 3 .2.2 SVD并行处理模型 33 3.. SVD降噪模型 33 3.2.4 BP神经网络模型 33 3.3 异常行为分析机制 34 3.3.1 SVD并行分解模型 34 3.3.2 SVD降噪模型 35 3.3.3 基于信息熵的BP神经网络模型 35 3.3.4 聚类模型 36 3.4 结果与分析 38 3.4.1 实验环境 38 3.4.2 评价指标 33..3实验过程 33..4结果 41 3.5 本章小结 44 参考文献 44 第4章 一种基于信誉投票的用户异常行为协同分析方法 45 4.1 引言 45 4.2 用户行为异常协同分析模型 46 4.2.1 相关概念 46 4.2.2 信誉模型 47 4.. D-Chord环 48 4.2.4 用户行为异常协同分析模型 4.3用户行为异常协同分析算法 51 4.3.1 构造训练样本 51 4.3.2 选择集成分类器 52 4.3.3 信誉计算 53 4.3.4 双向Chord环查找 55 4.4 用户行为异常协同分析算法 56 4.5 实验结果与分析 57 4.6 本章小结 61 参考文献 61 第5章 基于选择聚类融合的用户异常行为检测方法 63 5.1 引言 63 5.2 相关技术 63 5.2.1 聚类 63 5.2.2 基于分形维数的聚类模型 67 5.3 基于分形维数的异常行为分析机制 68 5.3.1 数据获取 69 5.3.2 聚类成员 69 5.3.3 选择策略 70 5.3.4 聚类融合 70 5.3.5 异常检测 71 5.4 实验及结果分析 72 5.4.1 实验环境 72 5.4.2 评价标准 72 5.4.3 实验过程 72 5.4.4 结果 76 5.5 本章小结 78 参考文献 78 第6章 基于Needleman-Wunsch算法的用户时序行为实时判别方法 80 6.1 引言 80 6.2 Needleman-Wunsch算法概述 81 6.3 基于Needleman-Wunsch算法的用户时序行为实时判别算法 82 6.3.1 算法概述 83 6.3.2 序列适应度 84 6.3.3 参考序列筛选 85 6.3.4 序列比对算法 85 6.3.5 自适应阈值算法 86 6.3.6 投票机制 86 6.3.7 结果反馈 86 6.4 实验及能分析 87 6.4.1 数据 87 6.4.2 算法验 88 6.4.3 能比较 89 6.5 本章小结 90 参考文献 91 第7章 基于多标签超网络的云用户行为认定模型 92 7.1 引言 92 7.2 相关理论 92 7.2.1 分类算法 92 7.2.2 传统的超网络模型 93 7.3 云用户行为认定模型 94 7.3.1 特征选择 94 7.3.2 特征选择 94 7.3.3 基于多标签超网络的异常行为划分机制 95 7.4 实验及结果分析 98 7.4.1 实验场景 98 7.4.2 结果 100 7.5 本章小结 102 参考文献 103 第8章 基于模式增长的异常行为识别与自主优化方法 104 8.1 引言 104 8.2 基于模式增长的异常行为识别与自主优化模型 105 8.2.1 相关概念 105 8.2.2 Map-Reduce模型 105 8.. 黑名单技术 106 8.2.4 模型描述 107 8.3 异常行为识别与自主优化方法 107 8.3.1 带有时间间隔约束的正常行为模式挖掘方法 108 8.3.2 基于分层匹配的用户时序行为异常识别方法 110 8.3.3 基于模式增长的用户时序行为自主优化方法 113 8.3.4 基于模式增长的异常行为识别与自主优化算法 115 8.4 实验与结果分析 115 8.5 本章小结 121 参考文献 121 第9章 基于D-TF-F的移动微学习资源部署方法 1 .1 引言 1 .2 移动微学习资源部署的系统模型 1 .2.1 TF-F算法模型 124 9.2.2 灰狼优化方法模型 124 9.. 基于云的移动微学习服务提供模型 125 9.3 移动微学习资源部署的模型功能 126 9.3.1 分类模块 126 9.3.2 两层云架构模块 128 9.3.3 灰狼优化模块 128 9.3.4 能耗计算 129.实验结果与分析 132 9.4.1 实验设置 132 9.4.2 实验过程与结果 132 9.5 本章小结 139 参考文献 139 0章 基于遗传算法的任务联合执行策略 141 10.1 引言 141 10.2 移动微学习的任务联合执行策略模型 142 10.2.1 相关概念 142 10.2.2 时间序列匹配模型 143 10.. 任务联合执行策略模型 144 10.3 问题描述 145 10.3.1 能耗描述 145 10.3.2 任务联合执行算法 148 10.4 实验分析 150 10.4.1 实验参数 150 10.4.2 实验结果 150 10.5 本章小结 154 参考文献 154 1章 基于群体协作的移动终端节能方法 155 11.1 引言 155 11.2 移动微学习的群体协作模型 156 11.2.1 Random Waypoint协作模型 156 11.2.2 R-树空间聚类模型 157 11.. 层次分析法模型 158 11.3 能耗计算 160 11.4 实验分析 161 11.4.1 实验参数 162 11.4.2 实验结果 162 11.5 本章小结 166 参考文献 166 2章 带语义的多层服务资源统一标识方法 167 12.1 引言 167 12.2 相关技术 167 12.2.1 资源信息编目格式 167 12.2.2 资源描述语言 171 1. 服务资源统一标识 173 1..1 用户资源请求分析 173 1..2 统一标识方法描述 175 12.4 实验与结果分析 176 12.4.1 场景设置 177 12.4.2 结果 177 12.5 本章小结 180 参考文献 180 3章 基于Pastry技术的服务资源自主组织方法 182 13.1 引言 182 13.2 相关技术 183 13.2.1 P2P网络 183 13.2.2 Pastry算法 184 13.3 基于Pastry技术的服务资源自主组织 187 13.3.1 云端资源自组织方法 188 13.3.2 云端节点加入 188 13.3.3 云端节点更新 189 13.3.4 云端资源请求路由过程 189 13.3.5 节点退出或失效 190 13.4 实验及结果分析 190 13.4.1 场景 190 13.4.2 结果 191 13.5 本章小结 193 参考文献 193
本书从全新的角度研究了移动云计算的可信计算理论和方法。在云环境下,通过用户、环境、服务三个维度所涉及的服务资源之间的协作与配合,实现彼此之间的互相映与协调(或约束),在保用户身份和用户操作可靠与安全的前提下,依据用户的个化需求和能耗情况,智能决策服务提供模式,快速映或动态调配服务资源,保障向用户提供满足需求的连续云服务,包括用户可信、环境可信、服务可信三个层面。以移动微学习为例,通过对上述内容的分析和应用,使学习资源得到有效的组织和合理的配置,在保学习者所请求云服务质量的同时,降低云服务提供所产生的能源消耗,实现“合法用户可使用较低能耗获取连续的学习服务”。
亲,大宗购物请点击企业用户渠道>小苏的服务会更贴心!
亲,很抱歉,您购买的宝贝销售异常火爆让小苏措手不及,请稍后再试~
非常抱歉,您前期未参加预订活动,
无法支付尾款哦!
抱歉,您暂无任性付资格