返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:

  • 正版新书]机器学习实战:以推荐系统应用为例肖睿、向成洪、徐圣
  • 全店均为全新正版书籍,欢迎选购!新疆西藏青海(可包挂刷).港澳台及海外地区bu bao快递
    • 作者: 肖睿、向成洪、徐圣林、于伦、王兰著著 | 肖睿、向成洪、徐圣林、于伦、王兰著编 | 肖睿、向成洪、徐圣林、于伦、王兰著译 | 肖睿、向成洪、徐圣林、于伦、王兰著绘
    • 出版社: 人民邮电出版社
    • 出版时间:2021-08-01
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    君凤文轩图书专营店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

    商品参数
    • 作者: 肖睿、向成洪、徐圣林、于伦、王兰著著| 肖睿、向成洪、徐圣林、于伦、王兰著编| 肖睿、向成洪、徐圣林、于伦、王兰著译| 肖睿、向成洪、徐圣林、于伦、王兰著绘
    • 出版社:人民邮电出版社
    • 出版时间:2021-08-01
    • 版次:1
    • 印次:1
    • 字数:0
    • 页数:230
    • 开本:16开
    • ISBN:9787115563200
    • 版权提供:人民邮电出版社
    • 作者:肖睿、向成洪、徐圣林、于伦、王兰著
    • 著:肖睿、向成洪、徐圣林、于伦、王兰著
    • 装帧:平装
    • 印次:1
    • 定价:59.8
    • ISBN:9787115563200
    • 出版社:人民邮电出版社
    • 开本:16开
    • 印刷时间:暂无
    • 语种:暂无
    • 出版时间:2021-08-01
    • 页数:230
    • 外部编号:党庄162354
    • 版次:1
    • 成品尺寸:暂无

    第 1章 推荐系统简介...1
    技能目标...  1
    本章任务...  1
    任务1.1  了解推荐系统的发展历史 ...2
    任务1.2  掌握推荐系统的核心要素...  4
    1.2.1  用户...  4
    1.2.2  物品和内容 ...  4
    1.2.3  事件.. .5
    1.2.4  语境...  6
    任务1.3  掌握推荐系统的基本构成...  6
    1.3.1  召回模块 ...8
    1.3.2  排序模块...  13
    1.3.3  过滤模块...  14
    任务1.4  了解推荐系统的新发展...  15
    1.4.1  基于会话的推荐系统...  15
    1.4.2  强化学习与推荐系统...  17
    任务1.5  认清推荐系统的发展方向...  17
    本章小结...  18
    本章习题...18
    第  2章 搭建试验平台...19
    技能目标...  19
    本章任务...  19
    任务2.1  安装和配置Anaconda ...  20
    2.1.1  下载并安装Anaconda ...  21
    2.1.2  新建环境...  22
    2.1.3  管理环境...  23
    2.1.4  添加国内的安装源 ...  25
    2.1.5  安装scikit-surprise软件包...  26
    2.1.6  安装其他软件包 ...  27
    任务2.2  获取试验数据集MovieLens...  28
    2.2.1  下载数据集 ...  28
    2.2.2  检查文件内容 ...  29
    2.2.3  分析评分数据...31
    任务2.3  安装集成开发环境PyCharm...  35
    2.3.1  下载PyCharm ...  35
    2.3.2  创建项目Recommender ...  35
    2.3.3  创建测试文件 ...37
    任务2.4  测试集成开发环境Spyder...  38
    任务2.5  测试Jupyter Notebook .  40
    2.5.1  安装并启动Jupyter Notebook .  41
    2.5.2  设置根目录 .  42
    2.5.3  Jupyter Notebook基本用法 ..  44
    2.5.4  运行测试文件  46
    本章小结.  47
    本章习题.  48
    第3章  推荐系统的评测 .49
    技能目标.  49
    本章任务.  49
    任务3.1  学习用户成长飞轮模型.  50
    任务3.2  掌握推荐系统的评测方法.  51
    3.2.1  离线测试..  51
    3.2.2  用户测试..  52
    3.2.3  线上测试..  54
    任务3.3  掌握推荐系统的评测指标.  55
    3.3.1  预测准确率 .  55
    3.3.2  覆盖率..  61
    3.3.3  多样性..  62
    3.3.4  惊喜度..  63
    3.3.5  新颖度..  64
    3.3.6  实时性..  65
    3.3.7  健壮性..  65
    3.3.8  商业目标..  66
    3.3.9  小结  68
    任务3.4  实际评测推荐系统  69
    3.4.1  线下测试..  69
    3.4.2  线上测试.. 72 本章小结.  74
    本章习题.  74
    第4章  基于内容的召回 .75
    技能目标.  75
    本章任务.  75
    任务4.1  掌握物品特征抽取的基本方法 ..  76
    4.1.1  抽取基本特征  77
    4.1.2  抽取文本特征  79
    4.1.3  抽取图像特征  81
    任务4.2  掌握相似度的衡量方法.  84
    4.2.1  曼哈顿距离 .  85
    4.2.2  欧氏距离..  85
    4.2.3  余弦相似度 .  86
    任务4.3  实际开发一款基于内容召回的推荐系统  86
    4.3.1  准备电影特征  87
    4.3.2  计算电影间的相似度.  89
    4.3.3  预测用户评分  91
    4.3.4  生成头部推荐  92
    任务4.4  掌握横向评测框架的开发和使用方法 ..  93
    4.4.1  自定义预测算法 ..  93
    4.4.2  比较控制器 .  95
    4.4.3  评测内容召回推荐算法  97
    任务4.5  理解基于内容召回的优点和缺点 .  99
    4.5.1  内容召回的优点 ..  99
    4.5.2  内容召回的缺点  100
    本章小结..  100
    本章习题..  100
    第5章  基于协同过滤的召回 .102
    技能目标..  102
    本章任务..  102
    任务5.1  掌握协同过滤的基本思想和主要分类  103
    任务5.2  掌握协同过滤中相似性的衡量方法 .  104
    5.2.1  行为数据的特点  105
    5.2.2  相似性的衡量 .  105
    任务5.3  实际开发一款基于用户的协同过滤推荐系统..  108
    5.3.1  创建用户评分矩阵 .. 108 5.3.2 创建用户相似度矩阵..  108
    5.3.3  寻找相似用户 .  109
    5.3.4  根据相似用户的喜好给出推荐 ..  109
    5.3.5  排序并过滤推荐电影列表(基于用户的协同过滤) ..110
    5.3.6  运行项目.110
    任务5.4  实际开发一款基于物品的协同过滤推荐系统112
    5.4.1  创建电影评分矩阵  113
    5.4.2  创建电影相似度矩阵114
    5.4.3  获取当前用户喜好  114
    5.4.4  根据用户喜好给出推荐115
    5.4.5  排序并过滤推荐电影列表(基于电影的协同过滤) ..115
    5.4.6  运行项目.115
    任务5.5  实际评测协同过滤与评分预测融合模型..118
    5.5.1  基于用户的K最近邻推荐118
    5.5.2  基于物品的K最近邻推荐118
    5.5.3  评测K最近邻推荐算法119
    本章小结..  120
    本章习题..  121
    第6章  基于深度学习的召回 .122
    技能目标..  122
    本章任务..  122
    任务6.1  掌握并实际评测矩阵分解算法  124
    任务6.2  掌握并实际评测受限玻尔兹曼机算法  129
    任务6.3  掌握并实际评测自动编码机算法 ..  133
    任务6.4  掌握优兔基于深度学习的召回模型 .  136
    任务6.5  了解Netflix的推荐模型  139
    本章小结..  141
    本章习题..  141
    第7章  经典排序模型142
    技能目标..  142
    本章任务..  142
    任务7.1  下载并探索一个排序用数据集  143
    任务7.2  掌握并实际评测逻辑回归排序算法 .  146
    7.2.1  逻辑回归的基本原理..  146
    7.2.2  逻辑回归示例代码 ..  147
    任务7.3  掌握并实际评测梯度提升决策树和逻辑回归融合模型 .. 150 7.3.1 梯度提升决策树的工作原理  150
    7.3.2  梯度提升决策树与逻辑回归融合模型  152
    7.3.3  梯度提升决策树和逻辑回归融合模型的示例代码..  153
    任务7.4  掌握并实际评测贝叶斯个性化排序算法.  156
    7.4.1  贝叶斯法则 ..  157
    7.4.2  贝叶斯个性化排序算法原理  162
    7.4.3  贝叶斯个性化排序示例代码  163
    本章小结..  170
    本章习题..  170
    第8章  基于深度学习的排序 .171
    技能目标..  171
    本章任务..  171
    任务8.1  掌握因子分解机的基本原理.  172
    任务8.2  掌握广度和深度融合模型的基本原理  177
    任务8.3  掌握优兔深度学习排序模型的基本原理.  185
    本章小结..  187
    本章习题..  188
    第9章  基于会话的推荐 ..189
    技能目标..  189
    本章任务..  189
    任务9.1  了解基于会话的推荐系统的发展历史  190
    任务9.2  掌握循环神经网络在推荐系统中的应用.  192
    9.2.1  基于门控循环单元的推荐系统 ..  193
    9.2.2  多会话迷你批处理 ..  194
    9.2.3  批处理中的负采样 ..  194
    9.2.4  排序损失函数的选择..  195
    9.2.5  实验过程  195
    任务9.3  学习将语境信息融入循环神经网络推荐系统..  196
    9.3.1  语境的重要性 .  197
    9.3.2  语境的融入方法  198
    9.3.3  融合语境的循环神经网络模型 ..  199
    9.3.4  实验过程  202
    本章小结..  203
    本章习题..  204
    第  10章 基于强化学习的推荐 ..205
    技能目标..  205 本章任务..  205
    任务10.1  了解在推荐系统中应用强化学习的背景..  206
    任务10.2  了解强化学习的技术基础  207
    10.2.1  情境描述.  207
    10.2.2  策略学习.  209
    10.2.3  用户长期参与度 .  210
    任务10.3  深入研究“探索与开采并举”的强化学习推荐系统  210
    10.3.1  提升多样性的强化学习推荐系统 ..  210
    10.3.2  试验过程.  213
    10.3.3  试验结果.  216
    本章小结..  217
    本章习题..  218
    第  11章 工业级推荐系统.219
    技能目标..  219
    本章任务..  219
    任务11.1  了解深度规模化稀疏张量网络引擎  220
    任务11.2  掌握DSSTNE深度学习框架的使用方法  221
    11.2.1  转换数据 .  224
    11.2.2  训练阶段 .  224
    11.2.3  预测阶段 .  226
    任务11.3  了解工业级推荐系统的架构方法  226
    11.3.1  系统架构 .  227
    11.3.2  并行化..  228
    11.3.3  结束语..  229
    本章小结..  229
    本章习题..  230

    肖睿,课工场创始人,北京大学教育学博士,北京大学软件学院特约讲师,北京大学学习科学实验室特约顾问。作为北大青鸟 Aptech 的联合创始人,历任学术总监、研究院院长、公司副总裁等核心岗位,拥有20多年的IT职业教育产品管理和企业管理经验。于2015年创办课工场,兼任总经理,旨在为大学生提供更可靠的 IT 就业教育及服务。

    1.以操作实践为学习的切入点,而不是直接切入理论讲解。
    2.以任务为驱动,贯穿知识内容。
    3.充分考虑学习者的认知曲线,由浅入深,边讲边练边切入理论知识。
    4.通过项目实训训练技能的综合使用能力。

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购