返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:

  • 正版 化学与生物视角下酸性矿山废水中次生矿物的地球化学过程
  • 新华书店旗下自营,正版全新
    • 作者: Zhi Dang,Yufei Zeng,Guining Lu 等著 | Zhi Dang,Yufei Zeng,Guining Lu 等编 | Zhi Dang,Yufei Zeng,Guining Lu 等译 | Zhi Dang,Yufei Zeng,Guining Lu 等绘
    • 出版社: 龙门书局
    • 出版时间:2020-11-01
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    美阅书店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

    商品参数
    • 作者: Zhi Dang,Yufei Zeng,Guining Lu 等著| Zhi Dang,Yufei Zeng,Guining Lu 等编| Zhi Dang,Yufei Zeng,Guining Lu 等译| Zhi Dang,Yufei Zeng,Guining Lu 等绘
    • 出版社:龙门书局
    • 出版时间:2020-11-01
    • 版次:第1版
    • 印次:1
    • 字数:536000
    • 页数:280
    • 开本:16开
    • ISBN:9787508858746
    • 版权提供:龙门书局
    • 作者:Zhi Dang,Yufei Zeng,Guining Lu 等
    • 著:Zhi Dang,Yufei Zeng,Guining Lu 等
    • 装帧:平脊精装
    • 印次:1
    • 定价:219.00
    • ISBN:9787508858746
    • 出版社:龙门书局
    • 开本:16开
    • 印刷时间:暂无
    • 语种:暂无
    • 出版时间:2020-11-01
    • 页数:280
    • 外部编号:10828570
    • 版次:第1版
    • 成品尺寸:暂无

    ContentsChapter 1 Pollution of Acid Mine Drainage in The Mining Area 11.1 Acid Mine Drainage and Its Occurrence 11.2 Mechanism of AMD Generation 31.3 AMD Prevention and Control Techniques 61.3.1 Oxygen Barrier 61.3.2 Bactericide 81.3.3 Co-Disposal and Blending 81.3.4 Passivation 91.3.5 Passive Treatment Techniques 91.4 Main Points of Interest in This Book 101.4.1 Sulfur Cycle in AMD-Affected Watershed 101.4.2 Fe Cycling and Nano-Fe(III) secondary minerals in AMD-Affected Watershed 121.4.3 Main Points of Interest inOurWork 141.5 The Dabaoshan Mine 151.5.1 Mineral Resources of The Dabaoshan Mine 151.5.2 Solid Waste Disposal in the Mine Area 161.5.3 AMD Control and Its Treatment in Mine Area 181.5.4 AMD Pollution in the Dabaoshan Mine Area 201.5.5 General Sampling Sites Arrangement 21Chapter 2 Sulfate Migration and Geochemical Behaviors in the AMD-Affected River 232.1 Physicochemical Characteristics of the Affected River Watershed 232.1.1 Acidic Watershed Environments 242.1.2 High Turbidity 252.1.3 Steep Riverbed Upstream 262.1.4 Oxidative Water Condition 292.1.5 High Salinity 292.2 Sulfur Element Distribution in the Watershed 302.2.1 Dissolved Sulfur in Water Phase 302.2.2 Sulfur Distributions in Sediments 31Chapter 3 Metallic Elements Fate and Migration Mechanisms in the AMD-Affected River 373.1 Metallic Elements in the Watershed 373.1.1 Dissolved Metallic Elements in the Water Phase 373.1.2 Metallic Elements in Sediment Phase 383.2 Migration Mechanisms for Metallic Elements in the Affected Watershed 443.2.1 Potential Mobility 443.2.2 Oxidative Leaching and Re-Adsorption 453.2.3 Hydraulic Transportation 463.2.4 Precipitation/ Co-Precipitation 473.3 Relations of Sulfur, Iron, and Metallic Elements in the Watershed 483.3.1 Relationship Argumentation by SPSS Analysis 483.3.2 Relationship Argumentation by Mineralogy Analysis 503.3.3 Relationship Argumentation via Isotope Analysis 54Chapter 4 Microbial Community Composition in AMD-Polluted Watershed and Paddy Soil 594.1 Microbial Community Shifts in Response to AMD Pollution in the Hengshi River Watershed 594.1.1 Materials and Methods 604.1.2 Physicochemical Characterization of the Watershed 614.1.3 Alpha Diversity Analyses 614.1.4 Beta Diversity Analyses 664.1.5 Spatiotemporal Dynamics of Microbial Communities 684.2 Microbial Community Responses to AMD-Laden Pollution in Rice Paddy Soils 814.2.1 Investigating the Effect of Pollution inAMD-Affected Paddy Soil 814.2.2 Microbial Community and Soil Properties 824.2.3 The Spatial Pattern of Microbial Community 91Chapter 5 Chemical Transformations of Secondary Minerals in the AMD-Affected Area: Induced by Dissolved Organic Matter 955.1 Role of L-Tryptophan in the Release of Chromium from Schwertmannite 965.1.1 Experimental Setting 965.1.2 Results and Discussion 995.1.3 Possible Mechanism 1095.2 Fulvic Acid Induction of the Liberation of Chromium From CrO24 -Substituted Schwertmannite 1115.2.1 Release of Total Fe, Cr, and SO24- from Schwertmannite 1115.2.2 Cr Speciation Analysis 1225.2.3 Proposed Schematic Illustrating Fate of Fe and Cr 1235.3 Elucidation of Desferrioxamine B on the Liberation of Chromium from Schwertmannite 1245.3.1 Dissolution Kinetics 1245.3.2 Effects of DFOB and pH on the Dissolution of Cr-Schwertmannite 125Chapter 6 Chemical Transformations of Secondary Minerals in AMD-Affected Area: Induced by Inorganic Substance 1396.1 Effect of Cu(II) on the Stability of Oxyanion-Substituted Schwertmannite 1406.1.1 Schwertmannite Synthesis 1406.1.2 Stability Experiments 1416.1.3 Effect of Cu(II) on the Stability of Oxyanion-Substituted Schwertmannite 1426.2 Transformation of Cadmium-Associated Schwertmannite and Subsequent Element Repartitioning Behaviors 1596.2.1 Cd-associated Schwertmannite Synthesis 1596.2.2 Surface Complexation Model Simulations 1596.2.3 Cd-associated Schwertmannite Transformation Experiments 1606.2.4 Transformation Mechanism of Cadmium-associated Schwertmannite 1606.3 The Behavior of Chromium and Arsenic Associated with Redox Transformation of Schwertmannite in AMD Environment 1736.3.1 Schwertmannite Synthesis 1736.3.2 Transformation Experiments 1736.3.3 The Behavior of Chromium and Arsenic Associated with Redox Transformation of Schwertmannite In AMD Environment 1746.4 Thiocyanate-Induced Labilization of Schwertmannite: Impacts and Mechanisms 1886.4.1 The Inducing Transformation of Schwertmannite 1886.4.2 TheMechanismofThiocyanate-InducedTransformation 1896.4.3 pH-Controlled Transformation 2006.4.4 Ligand-Promoted Transformation 201Chapter 7 The Microbial Transformation of Schwertmannite 2037.1 Schwertmannite Transformation Led by Iron-Reducing Bacteria 2037.1.1 Schwertmannite and Iron-Reducing Bacteria 2037.1.2 S. oneidensis MR-1 and the Transformation of Cr(V)-Loaded Schwertmannite 2047.2 Secondary Mineralization in AMD-Affected River Controlled By Functional Microbes 2127.2.1 Schwertmannite and Iron-Reducing Bacteria 2127.2.3 Secondary Mineralization by Microbial Community 2217.3 Extracellular Electron Transfer of Sulfate-Reducing Enrichment Culture 2247.3.1 Schwertmannite and Sulfate-Reducing Bacteria 2247.3.2 Schwertmannite Transformation and the Change of Enrichment Within Direct/Indirect Electron Transfer 2247.3.3 The Predicted Genetic Function during Schwertmannite Transformation within Direct/Indirect Electron Transfer 2287.3.4 Proposed Schematic of Microbial Transformation of Schwertmannite and Jarosite 232References 235


    Thisbookisofinterestregardingacidminedrainage(AMD),animportantenvironmentalproblemcausedbythenaturalweatheringofmetalsulfidesduringtheutilizationofmineralresources.IntheAMD-contaminatedwatershedenvironment,alargenumberofmetastableiron-sulfatesecondarymineralsareoftenformed,whichcanadsorbandco-precipitateheavymetalswithinAMD.Atthesametime,mineraltransformationdeterminestherereleasebehaviorofheavymetalsandtheirfateindifferentphases.Thisbookintroducesthescientificproblemsofbiochemicallycontrolledprocessesandheavymetalreleasemechanismsdrivenbyvariousenvironmentalfactorsasfollows:①migrationandfateofmetallicelementsinthemudimpoundmentandtheaffectedriver;②SO24-migrationinanAMD-affectedriver;③mineralogicalcharacteristicsofsedimentsinanAMD-affectedriver;④Fe-andS-metabolizingmicrobialcommunitiesinanAMD-affectedriverecosystem;⑤chemicalandbiologicaltransformationsofsecondarymineralphasesinAMD-affectedriversediments.Thistheoreticalframeworkwillhelptoclarifythemigrationpathwaysandinternalmechanismofheavymetalsinminingareas,thusprovidinginsightintothepreventionandcontrolofheavymetalpollutioninsuchareas.

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购