由于此商品库存有限,请在下单后15分钟之内支付完成,手慢无哦!
100%刮中券,最高50元无敌券,券有效期7天
活动自2017年6月2日上线,敬请关注云钻刮券活动规则更新。
如活动受政府机关指令需要停止举办的,或活动遭受严重网络攻击需暂停举办的,或者系统故障导致的其它意外问题,苏宁无需为此承担赔偿或者进行补偿。
醉染图书挖掘社交网络9787564150051
¥ ×1
Preface
PartⅠ.A Guided Tour ofthe SociaIWeb
Prelude
1.Mining Twitter: Exploring Trending Topics, Discovering What People Are Talking About, and More
1.1.Overview
1.2.Why Is Twitter All the Rage?
1.3.Exploring Twitters API
1.3.1.Fundamental Twitter Terminology
1.3.2.Creating a Twitter API Connection
1.3.3.Exploring Trending Topics
1.3.4.Searching for Tweets
1.4.Analyzing the 140 Characters
1.4.1.Extracting Tweet Entities
1.4.2.Analyzing Tweets and Tweet Entities with Frequency Analysis
1.4.3.Computing the Lexical Diversity of Tweets
1.4.4.Examining Patterns in Retweets
1.4.5.Visualizing Frequency Data with Histograms
1.5.Closing Remarks
1.6.Recommended Exercises
1.7.Online Resources
2.Mining Facebook: Analyzing Fan Pages, Examining Friendships, and More
2.1.Overview
2.2.Exploring Facebooks So Graph API
2.2.1.Understanding the So Graph API
2.2.2.Understanding the Open Graph Protocol
..Analyzing So Graph Connections
..1.Analyzing Facebook Pages
..2.Examining Friendships
2.4.Closing Remarks
2.5.Recommended Exercises
2.6.OnlLne Resources
3.Mining Linked In: Faceting Job Trtles, Clustering Colleagues, and More
3.1.Overview
3.2.Exploring the Linkedln API
3.2.1.Making Linkedln API Requests
3.2.2.Downloading Linkedln Connections as a CSV File
3.3.Crash Course on Clustering Data
3.3.1.Clustering Enhances User Experiences
3.3.2.Normalizing Data to Enable Analysis
3.3.3.Measuring Similarity
3.3.4.Clustering Algorithms
3.4.Closing Remarks
3.5.Recommended Exerases
3.6.Online Resources
4.Mining Google Computing Document Similarity, Extracting Collocations, and More
4.1.Overview
4.2.Exploring the Google+ API
4.2.1.Making Google+ API Requests
4.3.A Whiz—Bang Introduction to TF—F
4.3.1.Term Frequency
4.3.2.Inverse Document Frequency
4.3.3.TF—F
4.4.erying Human Language Data with TF—F
4.4.1.Introducing the Natural Language Toolkit
4.4.2.Applying TF—F to Human Language
4.4.3.Finding Similar Documents
4.4.4.Analyzing Bigrams in Human Language
4.4.5.Reflections on Analyzing Human Language Data
4.5.Closing Remarks
4.6.Recommended Exercises
4.7.Online Resources
5.Mining Web Pages: Using Natural Language Processing to Understand HumanLanguage, Summarize Blog Posts, and More.
5.1.Overview
5.2.Scraping, Parsing, and Crawling the Web
5.2.1.Breadth—First Search in Web Crawling
5.3.Discovering Semantics by Decoding Syntax
5.3.1.Natural Language Processing Illustrated Step—by—Step
5.3.2.Sentence Detection in Human Language Data
5.3.3.Document Summarization
5.4.Entity—Centric Analysis: A Paradigm Shift
5.4.1.Gisting Human Language Data
5.5.lity ofAnalytics for Processing Human Language Data
5.6.Closing Remarks
5.7.Recommended Exercises
5.8.Online Resources
6.Mining Mailboxes:Analyzing Whos Talking to Whom About What, How Often,and More
6.1.Overview
6.2.Obtaining and Processing a Mail Corpus
6.2.1.A Primer on Unix Mailboxes
6.2.2.Getting the Enron Data
6...Converting a Mail Corpus to a Unix Mailbox
6.2.4.Converting Unix Mailboxes to JSON
6.2.5.Importing a JSONified Mail Corpus into MongoDB
6.2.6.Programmatically Accessing MongoDB with Python
6.3.Analyzing the Enron Corpus
6.3.1.erying by Date/Time Range
6.3.2.Analyzing Patterns in Sender/Reciin&bsp;Communications
6.3.3.Writing Advanced eries
6.3.4.Searching Emails by Keywords
6.4.Discovering and Visualizing Time—Series Trends
6.5.Analyzing Your Own Mail Data
6.5.1.Accessing Your Gmail with OAuth
6.5.2.Fetching and Parsing Email Messages with IMAP
6.5.3.Visualizing Patterns in GMail with the "Graph Your Inbox Chrome Extension
6.6.Closing Remarks
6.7.Recommended Exercises
6.8.Online Resources
7 Mining GitHub:lnscig Software Collaboration Habits, Building Interest Graphs, and More
7.1.Overview
7.2.Exploring GitHubs API
7.2.1.Creating a GitHub API Connection
7.2.2.Making GitHub API Requests
7.3.Modeling Data with Prory&bsp;Graphs
7.4.Analyzing GitHub Interest Graphs
7.4.1.Seeding an Interest Graph
7.4.2.Computing Graph Centrality Measures
7.4.3.Extending the Interest Graph with "Follows" Edges for Users
7.4.4.Using Nodes as Pivots for More Efflcient eries
7.4.5.Visualizing Interest Graphs
7.5.Closing Remarks
7.6.Recommended Exercises
7.7.Online Resources
8.Mining the Semantically Marked—Up Web: Extracting Microformats,lnferencing overRDF, and More.
8.1.Overview
8.2.Microformats: Easy—to—Implement Metadata
8.2.1.Geocoordinates: A Common Thread for Just About Anything
8.2.2.Using Recipe Data to Improve Online Matchmaking
8...Accessing Linkedlns 200 Million Online Resumes
8.3.From Semantic Markup to Semantic Web: A Brief Interlude
8.4.The Semantic Web: An Evolutionary Revolution
8.4.1.Man Cannot Live on Facts Alone
8.4.2.Inferencing About an Open World
8.5.Closing Remarks
8.6.Recommended Exercises
8.7.Online Resources
PartⅡ.Twitter(ookbook
9.TwitterCookbook
9.1.Accessing Twitters API for Develomn&bsp;Purposes
9.2.Doing the OAuth Dance to Access Twitters API for Production Purposes
9.3.Discovering the Trending Topics
9.4.Searching for Tweets
9.5.Constructing Convenient Function Calls
9.6.Saving and Restoring JSON Data with Text Files
9.7.Saving and Accessing JSON Data with MongoDB
9.8.Sampling the Twitter Firehose with the Streaming API
9.9.Collecting Time—Series Data
9.10.Extracting Tweet Entities
9.11.Finding the Most Popular Tweets in a Collection of Tweets
9.12.Finding the Most Popular Tweet Entities in a Collection of Tweets
9.13.Tabulating Frequency Analysis
9.14.Finding Users Who Have Retweeted a Status
9.15.Extracting a Retweets Attribution
9.16.Making Robust Twitter Requests
9.17.Resolving User Profile Information
9.18.Extracting Tweet Entities from Arbitrary Text
9.19.Getting All Friends or Followers for a User
9.20.Analyzing a Users Friends and Followers
9.21.Harvesting a Users Tweets
9.22.Crawling a Friendship Graph
9..Analyzing Tweet Content
9.24.Summarizing Link Targets
9.25.Analyzing a Users Favorite Tweets
9.26.Closing Remarks
9.27.Recommended Exercises
9.28.Online Resources
PartⅢ.Appendixes
A.Information About This Books Virtual Machine Experience
B.OAuth Primer
C.Python and I Python Notebook Tips & Tricks
Index.
罗塞尔编著的《挖掘社交网络()(第2版)》中简洁而且具有操作的书将为你展示如何回答这些甚至更多的问题,你将学到如何组合社交网络数据、分析技术,如何通过可视化帮你找到你一直在社交世界中的内容。书中每个独立章节介绍了在社交网络的不同领域挖掘数据的技术,这些领域包括博客和邮件。你所需要具备的就是一定的编程经验和学习基本的python工具的意愿。
亲,大宗购物请点击企业用户渠道>小苏的服务会更贴心!
亲,很抱歉,您购买的宝贝销售异常火爆让小苏措手不及,请稍后再试~
非常抱歉,您前期未参加预订活动,
无法支付尾款哦!
抱歉,您暂无任性付资格