由于此商品库存有限,请在下单后15分钟之内支付完成,手慢无哦!
100%刮中券,最高50元无敌券,券有效期7天
活动自2017年6月2日上线,敬请关注云钻刮券活动规则更新。
如活动受政府机关指令需要停止举办的,或活动遭受严重网络攻击需暂停举办的,或者系统故障导致的其它意外问题,苏宁无需为此承担赔偿或者进行补偿。
全新正版Flink内核原理与实现9787111661894机械工业出版社
¥ ×1
序
前言
章 Flink入门
1.1 核心特点
1.1.1 批流一体
1.1.2 可靠的容错能力
1.1.3 高吞吐、低延迟
1.1.4 大规模复杂计算
1.1.5 多平台部署
1.2 架构
1.2.1 技术架构
1.2.2 运行架构
1.3 Flink的未来
1.4 准备工作
1.5 总结
第2章 Flink应用
2.1 Flink应用开发
2.2 API层次
. 数据流
2.4 数据流API
2.4.1 数据读取
2.4.2 处理数据
2.4.3 数据写出
2.4.4 旁路输出
2.5 总结
第3章 核心抽象
3.1 环境对象
3.1.1 执行环境
3.1.2 运行时环境
3.1.3 运行时上下文
3.2 数据流元素
3.3 数据转换
3.4 算子
3.4.1 算子行为
3.4.2 Flink算子
3.4.3 Blink算子
3.4.4 异步算子
3.5 函数体系
3.5.1 函数层次
3.5.2 处理函数
3.5.3 广播函数
3.5.4 异步函数
3.5.5 数据源函数
3.5.6 输出函数
3.5.7 检查点函数
3.6 数据分区
3.7 连接器
3.8 分布式
3.9 总结
第4章 时间与窗口
4.1 时间类型
4.2 窗口类型
4.3 窗口原理与机制
4.3.1 WindowAssigner
4.3.2 WindowTrigger
4.3.3 WindowEvictor
4.3.4 Window函数
4.4 水印
4.4.1 DataStream Watermark生成
4.4.2 Flink SL Watermark生成
4.4.3 多流的Watermark
4.5 时间服务
4.5.1 定时器服务
4.5.2 定时器
4.5.3 优先级队列
4.6 窗口实现
4.6.1 时间窗口
4.6.2 会话窗口
4.6.3 窗口
4.7 总结
第5章 类型与序列化
5.1 DataStream类型系统
5.1.1 物理类型
5.1.2 逻辑类型
5.1.3 类型推断
5.1.4 显式类型
5.1.5 类型系统存在的问题
5.2 SL类型系统
5.2.1 Flink Row
5.2.2 Blink Row
5.. ColumnarRow
5.3 数据序列化
5.3.1 数据序列化/反序列化
5.3.2 String序列化过程示例
5.3.3 作业序列化
5.3.4 Kryo序列化
5.4 总结
第6章 内存管理
6.1 自主内存管理
6.2 内存模型
6.2.1 内存布局
6.2.2 内存计算
6.3 内存数据结构
6.3.1 内存段
6.3.2 内存页
6.3.3 Buffer
6.3.4 Buffer资源池
6.4 内存管理器
6.4.1 内存申请
6.4.2 内存释放
6.5 网络缓冲器
6.5.1 内存申请
6.5.2 内存回收
6.6 总结
第7章 状态原理
7.1 状态类型
7.1.1 KeyedState与OperatorState
7.1.2 原始和托管状态
7.2 状态描述
7.3 广播状态
7.4 状态接口
7.4.1 状态操作接口
7.4.2 状态访问接口
7.5 状态存储
7.5.1 内存型和文件型状态存储
7.5.2 基于RocksDB的Statecnd
7.6 状态持久化
7.7 状态重分布
7.7.1 OperatorState重分布
7.7.2 KeyedState重分布
7.8 状态过期
7.8.1 DataStream中状态过期
7.8.2 Flink SL中状态过期
7.8.3 状态过期清理
7.9 总结
第8章 作业提交
8.1 提交流程
8.1.1 流水线执行器PipelineExecutor
8.1.2 Yarn Session提交流程
8.1.3 Yarn Per-Job提交流程
8.1.4 K8s Session提交流程
8.2 Graph总览
8.3 流图
8.3.1 StreamGraph核心对象
8.3.2 StreamGraph生成过程
8.3.3 单输入物理Transformation的转换示例
8.3.4 虚拟Transformation的转换示例
8.4 作业图
8.4.1 JobGraph核心对象
8.4.2 JobGraph生成过程
8.4.3 算子融合
8.5 执行图
8.5.1 ExecutionGraph核心对象
8.5.2 ExecutionGraph生成过程
8.6 总结
第9章 资源管理
9.1 资源抽象
9.2 资源管理器
9.3 Slot管理器
9.4 SlotProvider
9.5 Slot选择策略
9.6 Slot资源池
9.7 Slot共享
9.8 总结
0章 作业调度
10.1 调度
10.2 执行模式
10.3 数据交换模式
10.4 作业生命周期
10.4.1 作业生命周期状态
10.4.2 Task的生命周期
10.5 关键组件
10.5.1 JobMaster
10.5.2 TaskManager
10.5.3 Task
10.5.4 StreamTask
10.6 作业启动
10.6.1 JobMaster启动作业
10.6.2 流作业启动调度
10.6.3 批作业调度
10.6.4 TaskManger启动Task
10.7 作业停止
10.8 作业失败调度
10.8.1 默认作业失败调度
10.8.2 遗留的作业失败调度
10.9 组件容错
10.9.1 容错设计
10.9.2 HA服务
10.9.3 JobMaster的容错
10.9.4 ResourceManager容错
10.9.5 TaskManager 的容错
10.10 总结
1章 作业执行
11.1 作业执行图
11.2 核心对象
11.2.1 输入处理器
11.2.2 Task输入
11.. Task输出
11.2.4 结果分区
11.2.5 结果子分区
11.2.6 有限数据集
11.2.7 输入网关
11.2.8 输入通道
11.3 Task执行
11.3.1 Task处理数据
11.3.2 Task处理Watermark
11.3.3 Task处理StreamStatus
11.3.4 Task处理LatencyMarker
11.4 总结
2章 数据交换
12.1 数据传递模式
12.2 关键组件
12.2.1 RecordWriter
12.2.2 数据记录序列化器
12.. 数据记录反序列化器
12.2.4 结果子分区视图
12.2.5 数据输出
1. 数据传递
1..1 本地线程内的数据传递
1..2 本地线程间的数据传递
1.. 跨网络的数据传递
12.4 数据传递过程
12.4.1 数据读取
12.4.2 数据写出
12.4.3 数据清理
12.5 网络通信
12.5.1 网络连接
12.5.2 无流控
12.5.3 基于信用的流控
12.6 总结
3章 应用容错
13.1 容错保语义
13.2 检查点与保存点
13.3 作业恢复
13.3.1 检查点恢复
13.3.2 保存点恢复
13.3.3 恢复时的时间问题
13.4 关键组件
13.4.1 检查点协调器
13.4.2 检查点消息
13.5 轻量级异步分布式快照
13.5.1 基本概念
13.5.2 Barrier对齐
13.6 检查点执行过程
13.6.1 JobMaster触发检查点
13.6.2 TaskExecutor执行检查点
13.6.3 JobMaster确认检查点
13.7 检查点恢复过程
13.8 端到端严格一次
13.8.1 两阶段提交协议
13.8.2 两阶段交实
13.9 总结
4章 Flink SL
14.1 Apache Calcite
14.1.1 Calcite是什么
14.1.2 Calcite的技术特点
14.1.3 Calcite的主要功能
14.1.4 Calcite的核心原理
14.2 动态表
14.2.1 流映为表
14.2.2 连续查询
14.. 流上SL查询限制
14.2.4 表到流的转换
14.3 TableEnvironment
14.3.1 TableEnvironment体系
14.3.2 TableEnvironment使用示例
14.4 Table API
14.5 SL API
14.6 元数据
14.6.1 元数据管理
14.6.2 元数据分类
14.7数据访问
14.7.1Table Source
14.7.2Table Slink
14.8 SL函数
14.9 Planner关键抽象
14.9.1 Expression
14.9.2 ExpressionResolver
14.9.3 Oraio
14.9.4 eryOraio
14.9.5 物理计划节点
14.10 Blink Planner和Flink Planner对比
14.11 Blink与Calcite关系
14.12 Blink SL执行过程
14.12.1 从SL到Oraio
14.12.2 Oraio到Transformation
14.13 Blink Table API执行过程
14.13.1 Table API到Oraio
14.13.2 Oraio到Transformation
14.14 Flink与Calcite的关系
14.15 Flink SL执行过程
14.15.1 SL 到Oraio
14.15.2 Oraio到DataStream/DataSet
14.16 Flink Table API执行过程
14.17 SL优化
14.18 Blink优化
14.18.1 优化器
14.18.2 代价计算
14.18.3 优化过程
14.18.4 优化规则
14.18.5 公共子图
14.19 Flink优化
14.19.1 优化器
14.19.2 优化过程
14.19.3 优化规则
14.20 代码生成
14.20.1 为什么进行代码生成
14.20.2 代码生成范围
14.20.3 代码生成示例
14.21 总结
5章 运维监控
15.1 监控指标
15.2 指标组
15.3 监控集成
15.4 指标注册中心
15.5 指标查询服务
15.6 延迟跟踪实现原理
15.7 总结
6章 RPC框架
16.1 Akka简介
16.1.1 Akka是什么
16.1.2 使用Akka
16.1.3 Akka的通信
16.2 RPC消息的类型
16.3 RPC通信组件
16.3.1 RpcGateway
16.3.2 RpcEndpoint
16.3.3 RpcService
16.3.4 RpcServer
16.3.5 AkkaRpcActor
16.4 RPC交互过程
16.4.1 RPC请求发送
16.4.2 RPC请求响应
16.5总结
专家寄语
参考文献
1. 冯飞,有 10余年IT研发经验,专注于大数据相关技术领域,持续跟踪研究大数据计算引擎的理论模型及其演进,深入研读Flink、Apache Beam、Spark等的源码,尤其精通Flink。目前从事批流AI融合的新一代数据仓库设计、研发等工作。
2. 崔鹏云,于北京邮电大学,获硕士,曾在MicroSoft和Teradata国外知名企业的研发心职9年,有15年的企业级海量数据离线和在线分析技术应用实战经验,拥有外众多TB及PB级大数据客户实时数据处理和分析落地能力。
3. 陈冠华,于北京大学计算机软件与理论专业,获博士。2009~2011年在北京大学从事博士后研究工作,研究领域包括大数据内存及实时计算技术、数据仓库、数据挖掘和机器学习等,有超过15年的海量数据离线和在线处理技术的学术研究与实践经验。
1. 作者团队:9位行业专家联袂,带你参透Flink的内核原理。2. 内容全面详实:从Flink的基本思想、原理到其后期的技术实现与管理。3. 读者覆盖面广:从大数据开发、架构人员到能优化运维。
亲,大宗购物请点击企业用户渠道>小苏的服务会更贴心!
亲,很抱歉,您购买的宝贝销售异常火爆让小苏措手不及,请稍后再试~
非常抱歉,您前期未参加预订活动,
无法支付尾款哦!
抱歉,您暂无任性付资格