- 商品参数
-
- 作者:
伊莱亚斯著
- 出版社:机械工业出版社
- ISBN:9785321619782
- 版权提供:机械工业出版社
店铺公告
为保障消费者合理购买需求及公平交易机会,避免因非生活消费目的的购买货囤积商品,抬价转售等违法行为发生,店铺有权对异常订单不发货且不进行赔付。异常订单:包括但不限于相同用户ID批量下单,同一用户(指不同用户ID,存在相同/临近/虚构收货地址,或相同联系号码,收件人,同账户付款人等情形的)批量下单(一次性大于5本),以及其他非消费目的的交易订单。 温馨提示:请务必当着快递员面开箱验货,如发现破损,请立即拍照拒收,如验货有问题请及时联系在线客服处理,(如开箱验货时发现破损,所产生运费由我司承担,一经签收即为货物完好,如果您未开箱验货,一切损失就需要由买家承担,所以请买家一定要仔细验货), 关于退货运费:对于下单后且物流已发货货品在途的状态下,原则上均不接受退货申请,如顾客原因退货需要承担来回运费,如因产品质量问题(非破损问题)可在签收后,联系在线客服。
如遇套装商品/书籍无法选择选项,请联系在线客服。如不联系统一不发货,做不发货处理。
实分析
作 者:(美)伊莱亚斯M.斯坦恩(Elias M.Stein),(美)拉米·沙卡什(Rami Shakarchi) 著;叶培新,魏秀杰 译 著
定 价:78
出 版 社:机械工业出版社
出版日期:2017年05月01日
页 数:297
装 帧:精装
ISBN:9787111552963
●译者序
前言
引言
1傅里叶级数:完备化
2连续函数的极限
3曲线的长度
4微分与积分
5测度问题
章测度论
1预备知识
2外测度
3可测集与勒贝格测度
4可测函数
4 1定义与基本性质
4 2用简单函数或阶梯函数逼近
4 3李特尔伍德三大原理
5+ Brunn-Minkowski不等式
6习题
7问题
第2章积分理论
1勒贝格积分:基本性质与收敛定理
2可积函数空间F
3 Fubini定理
3 1定理的叙述与证明
3 2 Fubi¨ni定理的应用
4+ 傅里叶反演公式
5习题
6问题
第3章微分与积分
1积分的微分
1 1 哈代一李特尔伍德极大函数
1 2勒贝格微分定理
2好的核与恒同逼近
第4章希尔伯特空间简介
第5章希尔伯特空间:几个例子
第6章抽象测度和积分理论
1 3延拓定理
2测度空间上的积分
3例子
3 1乘积测度和一般的Fubi¨ni定理
3 2极坐标的积分公式
33R上的博雷尔测度和勒贝格一靳蒂尔切斯积分
4测度的绝对连续性
4 1带号测度
4 2绝对连续性
5+遍历定理
5 1平均遍历定理
5 2极大遍历定理
5 3逐点遍历定理
5 4遍历保测变换
6+附录:谱定理
6 1定理的叙述
6 2正算子
6 3定理的证明
6 4谱
7习题
8问题
第7章豪斯多夫测度和分形
1豪斯多夫测度
2豪斯多夫维数
2 1例子
2 2自相似
3空间填充曲线
3 1 四次区间和二进正方形
3 2二进对应
3 3佩亚诺映射的构造
4' Besicovitch集和正则性
4 1拉东变换
4 2当d≥3时集合的正则性
4 3 Besicovitch集有维数2
4 4 Besicovitch集的构造
5习题
6问题
注记和参考
符号索引
参考文献
内容简介
该书是调和分析大师stein的力作,长期被普林斯顿、哈佛等众多名校作为教材使用。总体分为测度、积分以及希尔伯特空间三部分。通过傅立叶级数的完备化、连续函数的极限、曲线的长度、微分与积分等问题说明经典微积分的局限性;进而指出解决以上问题的关键在于某种测度的存在性问题。而勒贝格测度就是这样的测度。以此为基础建立实分析理论。用统一、联系的观点看待现代分析,把现代分析的不同分支领域视为高度相互联系而非分离的学科。通过这些联系可以使读者在整体上对现代分析这一学科有更好的理解。对基本概念和基本方法的来龙去脉、后续应用、主要思想的阐述很好详尽、透彻。特别强调了抽象概念的引入是为了解决直观、鲜明的重要问题而非一味追求概念的推广、深化。书中主要篇幅在于对基本概念和基本方法的说明。而几乎没有复杂的推导计算。这与一些定义-定理-证明的“标准”教科书写法截然不同。该书的适用面很广。虽然该书包含了许多现代的内容,但......
(美)伊莱亚斯M.斯坦恩(Elias M.Stein),(美)拉米·沙卡什(Rami Shakarchi) 著;叶培新,魏秀杰 译 著
Elias M.Stein,有名数学家,美国普林斯顿大学终身教授,美国国家科学院院士,美国文理学院院士,沃尔夫奖获得者。他是当代分析,特别是调和分析领域的人物之一。由于在该研究领域的突出贡献,Elias M.Stein荣获1984年美国数学会的Steele奖,1993年获得瑞士科学院颁发的Schock奖,他的许多著作成为影响学科发展的重要参考文献。
从2000年春季开始,四个学期的系列课程在普林斯顿大学讲授,其目的是用统一的方法去展现分析学的核心内容。我们的目的不仅是为了生动说明存在于分析学的各个部分之间的有机统一,还是为了阐述这门学科的方法在数学其他领域和自然科学的广泛应用。本系列丛书是对讲稿的一个详细阐述。 虽然有许多优秀教材涉及我们覆盖的单个部分,但是我们的目标不同:不是以单个学科,而是以高度的互相联系来展示分析学的各种不同的子领域。总的来说,我们的观点是观察到的这些联系以及所产生的协同效应将激发读者更好地理解这门学科。记住这点,我们专注于形成该学科的主要方法和定理(有时会忽略掉更为系统的方法),并严格按照该学科发展的逻辑顺序进行。 我们将内容分成四卷,每一卷反映一个学期所包含的内容,这四卷的书名如下: I傅里叶分析导论。 Ⅱ复分析。 Ⅲ实分析:测度论、积分以及希尔伯特空间。 Ⅳ泛函分析:分析......
1