返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:

  • 正版 量化投资:MATLAB数据挖掘技术与实践 卓金武,周英 电子工业
  • 新华书店旗下自营,正版全新
    • 作者: 卓金武,周英著 | 卓金武,周英编 | 卓金武,周英译 | 卓金武,周英绘
    • 出版社: 电子工业出版社
    • 出版时间:2016-11-01
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    美阅书店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

    商品参数
    • 作者: 卓金武,周英著| 卓金武,周英编| 卓金武,周英译| 卓金武,周英绘
    • 出版社:电子工业出版社
    • 出版时间:2016-11-01
    • 版次:1
    • 印刷时间:2017-01-01
    • 字数:717.0
    • 页数:424
    • 开本:小16开
    • ISBN:9787121302305
    • 版权提供:电子工业出版社
    • 作者:卓金武,周英
    • 著:卓金武,周英
    • 装帧:平装-胶订
    • 印次:暂无
    • 定价:98.00
    • ISBN:9787121302305
    • 出版社:电子工业出版社
    • 开本:小16开
    • 印刷时间:2017-01-01
    • 语种:中文
    • 出版时间:2016-11-01
    • 页数:424
    • 外部编号:8873249
    • 版次:1
    • 成品尺寸:暂无

    第一篇 基础篇
    第1章 绪论 2
    1.1 量化投资与数据挖掘的关系 2
    1.1.1 什么是量化投资 2
    1.1.2 量化投资的特点 3
    1.1.3 量化投资的核心——量化模型 5
    1.1.4 量化模型的主要产生方法——
    数据挖掘 7
    1.2 数据挖掘的概念和原理 8
    1.2.1 什么是数据挖掘 8
    1.2.2 数据挖掘的原理 10
    1.3 数据挖掘在量化投资中的应用 11
    1.3.1 宏观经济分析 11
    1.3.2 估价 13
    1.3.3 量化选股 14
    1.3.4 量化择时 14
    1.3.5 算法交易 14
    1.4 本章小结 15
    参考文献 16
    第2章 数据挖掘的内容、过程及
    工具 17
    2.1 数据挖掘的内容 17
    2.1.1 关联 17
    2.1.2 回归 19
    2.1.3 分类 20
    2.1.4 聚类 21
    2.1.5 预测 22
    2.1.6 诊断 23
    2.2 数据挖掘过程 24
    2.2.1 数据挖掘过程概述 24
    2.2.2 挖掘目标的定义 25
    2.2.3 数据的准备 26
    2.2.4 数据的探索 28
    2.2.5 模型的建立 29
    2.2.6 模型的评估 33
    2.2.7 模型的部署 35
    2.3 数据挖掘工具 36
    2.3.1 MATLAB 36
    2.3.2 SAS 37
    2.3.3 SPSS 38
    2.3.4 WEKA 39
    2.3.5 R 41
    2.3.6 工具的比较与选择 42
    2.4 本章小结 43
    参考文献 43
    第3章 MATLAB快速入门 44
    3.1 MATLAB快速入门 44
    3.1.1 MATLAB概要 44
    3.1.2 MATLAB的功能 45
    3.1.3 快速入门案例 46
    3.1.4 入门后的提高 55
    3.2 MATLAB常用技巧 55
    3.2.1 常用标点的功能 55
    3.2.2 常用操作指令 56
    3.2.3 指令编辑操作键 56
    3.2.4 MATLAB数据类型 56
    3.3 MATLAB开发模式 58
    3.3.1 命令行模式 58
    3.3.2 脚本模式 58
    3.3.3 面向对象模式 58
    3.3.4 三种模式的配合 58
    3.4 小结 59
    第二篇 技术篇
    第4章 数据的准备 63
    4.1 数据的收集 63
    4.1.1 认识数据 63
    4.1.2 数据挖掘的数据源 64
    4.1.3 数据抽样 65
    4.1.4 量化投资的数据源 67
    4.1.5 从雅虎获取交易数据 69
    4.1.6 从大智慧获取财务数据 71
    4.1.7 从Wind中获取高质量数据 73
    4.2 数据质量分析 75
    4.2.1 数据质量分析的必要性 75
    4.2.2 数据质量分析的目的 75
    4.2.3 数据质量分析的内容 76
    4.2.4 数据质量分析的方法 76
    4.2.5 数据质量分析的结果及应用 82
    4.3 数据预处理 82
    4.3.1 为什么需要数据预处理 82
    4.3.2 数据预处理的主要任务 83
    4.3.3 数据清洗 84
    4.3.4 数据集成 88
    4.3.5 数据归约 89
    4.3.6 数据变换 90
    4.4 本章小结 92
    参考文献 93
    第5章 数据的探索 94
    5.1 衍生变量 95
    5.1.1 衍生变量的定义 95
    5.1.2 变量衍生的原则和方法 96
    5.1.3 常用的股票衍生变量 96
    5.1.4 评价型衍生变量 101
    5.1.5 衍生变量数据收集与集成 103
    5.2 数据的统计 104
    5.2.1 基本描述性统计 105
    5.2.2 分布描述性统计 106
    5.3 数据可视化 106
    5.3.1 基本可视化方法 107
    5.3.2 数据分布形状可视化 108
    5.3.3 数据关联情况可视化 110
    5.3.4 数据分组可视化 111
    5.4 样本选择 113
    5.4.1 样本选择的方法 113
    5.4.2 样本选择应用实例 113
    5.5 数据降维 116
    5.5.1 主成分分析(PCA)基本
    原理 116
    5.5.2 PCA应用案例:企业综合
    实力排序 118
    5.5.3 相关系数降维 122
    5.6 本章小结 123
    参考文献 123
    第6章 关联规则方法 124
    6.1 关联规则概要 124
    6.1.1 关联规则的提出背景 124
    6.1.2 关联规则的基本概念 125
    6.1.3 关联规则的分类 127
    6.1.4 关联规则挖掘常用算法 128
    6.2 Apriori算法 128
    6.2.1 Apriori算法的基本思想 128
    6.2.2 Apriori算法的步骤 129
    6.2.3 Apriori算法的实例 129
    6.2.4 Apriori算法的程序实现 132
    6.2.5 Apriori算法的优缺点 135
    6.3 FP-Growth算法 136
    6.3.1 FP-Growth算法步骤 136
    6.3.2 FP-Growth算法实例 137
    6.3.3 FP-Growth算法的优缺点 139
    6.4 应用实例:行业关联选股法 139
    6.5 本章小结 141
    参考文献 142
    第7章 数据回归方法 143
    7.1 一元回归 144
    7.1.1 一元线性回归 144
    7.1.2 一元非线性回归 148
    7.1.3 一元多项式回归 153
    7.2 多元回归 153
    7.2.1 多元线性回归 153
    7.2.2 多元多项式回归 157
    7.3 逐步归回 160
    7.3.1 逐步回归的基本思想 160
    7.3.2 逐步回归步骤 161
    7.3.3 逐步回归的MATLAB方法 162
    7.4 Logistic回归 164
    7.4.1 Logistic模型 164
    7.4.2 Logistic回归实例 165
    7.5 应用实例:多因子选股模型
    的实现 168
    7.5.1 多因子模型的基本思想 168
    7.5.2 多因子模型的实现 169
    7.6 本章小结 172
    参考文献 172
    第8章 分类方法 173
    8.1 分类方法概要 173
    8.1.1 分类的概念 173
    8.1.2 分类的原理 174
    8.1.3 常用的分类方法 175
    8.2 K-近邻(KNN) 176
    8.2.1 K-近邻原理 176
    8.2.2 K-近邻实例 177
    8.2.3 K-近邻特点 180
    8.3 贝叶斯分类 181
    8.3.1 贝叶斯分类原理 181
    8.3.2 朴素贝叶斯分类原理 182
    8.3.3 朴素贝叶斯分类实例 184
    8.3.4 朴素贝叶斯特点 185
    8.4 神经网络 185
    8.4.1 神经网络的原理 185
    8.4.2 神经网络的实例 188
    8.4.3 神经网络的特点 188
    8.5 逻辑斯蒂(Logistic) 189
    8.5.1 逻辑斯蒂的原理 189
    8.5.2 逻辑斯蒂的实例 189
    8.5.3 逻辑斯蒂的特点 189
    8.6 判别分析 190
    8.6.1 判别分析的原理 190
    8.6.2 判别分析的实例 191
    8.6.3 判别分析的特点 191
    8.7 支持向量机(SVM) 192
    8.7.1 SVM的基本思想 192
    8.7.2 理论基础 193
    8.7.3 支持向量机的实例 196
    8.7.4 支持向量机的特点 196
    8.8 决策树 197
    8.8.1 决策树的基本概念 197
    8.8.2 决策树的建构的步骤 198
    8.8.3 决策树的实例 201
    8.8.4 决策树的特点 202
    8.9 分类的评判 202
    8.9.1 正确率 202
    8.9.2 ROC曲线 204
    8.10 应用实例:分类选股法 206
    8.10.1 案例背景 206
    8.10.2 实现方法 208
    8.11 延伸阅读:其他分类方法 210
    8.12 本章小结 211
    参考文献 211
    第9章 聚类方法 212
    9.1 聚类方法概要 212
    9.1.1 聚类的概念 212
    9.1.2 类的度量方法 214
    9.1.3 聚类方法的应用场景 216
    9.1.4 聚类方法的分类 217
    9.2 K-means方法 217
    9.2.1 K-means的原理和步骤 218
    9.2.2 K-means实例1:自主编程 219
    9.2.3 K-means实例2:集成函数 221
    9.2.4 K-means的特点 224
    9.3 层次聚类 225
    9.3.1 层次聚类的原理和步骤 225
    9.3.2 层次聚类的实例 227
    9.3.3 层次聚类的特点 229
    9.4 神经网络聚类 229
    9.4.1 神经网络聚类的原理和步骤 229
    9.4.2 神经网络聚类的实例 229
    9.4.3 神经网络聚类的特点 230
    9.5 模糊C-均值(FCM)方法 230
    9.5.1 FCM的原理和步骤 230
    9.5.2 FCM的应用实例 232
    9.5.3 FCM算法的特点 233
    9.6 高斯混合聚类方法 233
    9.6.1 高斯混合聚类的原理和步骤 233
    9.6.2 高斯聚类的实例 236
    9.6.3 高斯聚类的特点 236
    9.7 类别数的确定方法 237
    9.7.1 类别的原理 237
    9.7.2 类别的实例 238
    9.8 应用实例:股票聚类分池 240
    9.8.1 聚类目标和数据描述 240
    9.8.2 实现过程 240
    9.8.3 结果及分析 242
    9.9 延伸阅读 244
    9.9.1 目前聚类分析研究的主要
    内容 244
    9.9.2 SOM智能聚类算法 245
    9.10 本章小结 246
    参考文献 246
    第10章 预测方法 247
    10.1 预测方法概要 247
    10.1.1 预测的概念 247
    10.1.2 预测的基本原理 248
    10.1.3 量化投资中预测的主要
    内容 249

    10.1.4 预测的准确度评价及影响
    因素 250
    10.1.5 常用的预测方法 251
    10.2 灰色预测 252
    10.2.1 灰色预测原理 252
    10.2.2 灰色预测的实例 254
    10.3 马尔科夫预测 256
    10.3.1 马尔科夫预测的原理 256
    10.3.2 马尔科夫过程的特性 257
    10.3.3 马尔科夫预测的实例 258
    10.4 应用实例:大盘走势预测 262
    10.4.1 数据的选取及模型的建立 263
    10.4.2 预测过程 264
    10.4.3 预测结果与分析 265
    10.5 本章小结 265
    参考文献 267
    第11章 诊断方法 268
    11.1 离群点诊断概要 268
    11.1.1 离群点诊断的定义 268
    11.1.2 离群点诊断的作用 269
    11.1.3 离群点诊断方法分类 271
    11.2 基于统计的离群点诊断 271
    11.2.1 理论基础 271
    11.2.2 应用实例 273
    11.2.3 优点与缺点 275
    11.3 基于距离的离群点诊断 275
    11.3.1 理论基础 275

    11.3.2 应用实例 276
    11.3.3 优点与缺点 278
    11.4 基于密度的离群点挖掘 278
    11.4.1 理论基础 278
    11.4.2 应用实例 279
    11.4.3 优点与缺点 281
    11.5 基于聚类的离群点挖掘 281
    11.5.1 理论基础 281
    11.5.2 应用实例 282
    11.5.3 优点与缺点 284
    11.6 应用实例:离群点诊断量化
    择时 284
    11.7 延伸阅读:新兴的离群点
    挖掘方法 286
    11.7.1 基于关联的离群点挖掘 286
    11.7.2 基于粗糙集的离群点挖掘 286
    11.7.3 基于人工神经网络的离群点
    挖掘 287
    11.8 本章小结 287
    参考文献 288
    第12章 时间序列方法 289
    12.1 时间序列的基本概念 289
    12.1.1 时间序列的定义 289
    12.1.2 时间序列的组成因素 290
    12.1.3 时间序列的分类 291
    12.1.4 时间序列分析方法 292
    12.2 平稳时间序列分析方法 292
    12.2.1 移动平均法 293
    12.2.2 指数平滑法 294
    12.3 季节指数预测法 295
    12.3.1 季节性水平模型 295
    12.3.2 季节性趋势模型 296
    12.4 时间序列模型 296
    12.4.1 ARMA模型 296
    12.4.2 ARIMA模型 297
    12.4.3 ARCH模型 298
    12.4.4 GARCH模型 298
    12.5 应用实例:基于时间序列的
    股票预测 299
    12.6 本章小结 303
    参考文献 303
    第13章 智能优化方法 304
    13.1 智能优化方法概要 305
    13.1.1 智能优化方法的概念 305
    13.1.2 在量化投资中的作用 305
    13.1.3 常用的智能优化方法 305
    13.2 遗传算法 307
    13.2.1 遗传算法的原理 307
    13.2.2 遗传算法的步骤 308
    13.2.3 遗传算法实例 316
    13.2.4 遗传算法的特点 317
    13.3 模拟退火算法 318
    13.3.1 模拟退火算法的原理 318
    13.3.2 模拟退火算法步骤 320
    13.3.3 模拟退火算法实例 323
    13.3.4 模拟退火算法的特点 329
    13.4 应用实例:组合投资优化 330
    13.4.1 问题描述 330
    13.4.2 求解过程 330
    13.5 延伸阅读:其他智能方法 331
    13.5.1 粒子群算法 331
    13.5.2 蚁群算法 333
    13.6 本章小结 334
    参考文献 335
    第三篇 实践篇
    第14章 统计套利策略的挖掘与
    优化 338
    14.1 统计套利策略概述 338
    14.1.1 统计套利的定义 338
    14.1.2 统计套利策略的基本思想 338
    14.1.3 统计套利策略挖掘的方法 339
    14.2 基本策略的挖掘 340
    14.2.1 准备数据 340
    14.2.2 探索交易策略 340
    14.2.3 验证交易策略 341
    14.2.4 选择最佳的参数 342
    14.2.5 参数扫描法 345
    14.2.6 考虑交易费 346
    14.3 高频交易策略及优化 348
    14.3.1 高频交易的基本思想 348
    14.3.2 高频交易的实现 350
    14.4 多交易信号策略的组合及
    优化 352
    14.4.1 多交易信号策略 352
    14.4.2 交易信号的组合优化机理 354
    14.4.3 交易信号的组合优化实现 355
    14.5 本章小结 358
    参考文献 358
    第15章 配对交易策略的挖掘与
    实现 360
    15.1 配对交易概述 360
    15.1.1 配对交易的定义 360
    15.1.2 配对交易的特点 361
    15.1.3 配对选取步骤 362
    15.2 协整检验的理论基础 363
    15.2.1 协整关系的定义 363
    15.2.2 EG两步协整检验法 363
    15.2.3 Johansen协整检验法 364
    15.3 配对交易的实现 365
    15.3.1 协整检验的实现 365
    15.3.2 配对交易函数 367
    15.3.3 协整配对中的参数优化 369
    15.4 延伸阅读:配对交易的
    三要素 370
    15.4.1 配对交易的前提 370
    15.4.2 配对交易的关键 371
    15.4.3 配对交易的假设 371
    15.5 本章小结 371
    参考文献 372
    第16章 基于Wind数据的程序化
    交易 373
    16.1 程序化交易概述 373
    16.1.1 程序化交易的定义 373
    16.1.2 程序化交易的实现过程 374
    16.1.3 程序化交易的分类 376
    16.2 数据的处理及探索 377
    16.2.1 获取股票日交易数据 377
    16.2.2 计算指标 381
    16.2.3 数据标准化 388
    16.2.4 变量筛选 389
    16.3 模型的建立及评估 391
    16.3.1 股票预测的基本思想 391
    16.3.2 模型的训练及评价 392
    16.4 组合投资的优化 394
    16.4.1 组合投资的理论基础 394
    16.4.2 组合投资的实现 398
    16.5 程序化交易的实施 402
    16.6 本章小结 403
    参考文献 404
    第17章 基于Quantrader平台的
    量化投资 405
    17.1 量化平台概述 405
    17.1.1 量化平台现状 405
    17.1.2 Quantrader量化平台的构成 406
    17.1.3 Quantrader的工作流程 407
    17.2 基于Quantrader平台的量化
    实现过程 407
    17.2.1 获取交易数据 408
    17.2.2 计算衍生变量 410

    17.2.3 数据标准化 410
    17.2.4 变量优选 410
    17.2.5 训练模型 411
    17.2.6 策略回测 411
    17.3 延伸阅读:Quantrader平台
    的拓展 412
    第18章 基于数据挖掘技术的量化
    交易系统 415
    18.1 交易系统概述 416
    18.1.1 交易系统的定义 416
    18.1.2 交易系统的作用 416
    18.2 DM交易系统总体设计 417
    18.2.1 系统目标 417
    18.2.2 相关约定 418
    18.2.3 系统结构 418
    18.3 短期交易子系统 419
    18.3.1 子系统功能描述 419
    18.3.2 数据预处理模块 419
    18.3.3 量化选股模块 419
    18.3.4 策略回测模块 420
    18.4 中长期交易子系统 420
    18.4.1 子系统功能描述 420
    18.4.2 导入数据模块 421
    18.4.3 投资组合优化模块 421
    18.5 系统的拓展与展望 423
    18.6 本章小结 423
    参考文献 424

    卓金武,MathWorks中国科学计算业务总监,主要职责是向中国区MATLAB正版用户提供数据挖掘和量化投资解决方案。曾2次获全国大学生数学建模竞赛一等奖 (2003, 2004),1次获全国研究生数学建模竞赛一等奖 (2007);主编三著两部:《MATLAB在数学建模中的应用》(第一版和第二版),《量化投资:数据挖掘技术与实践(MATLAB版)》。

    周英,中科数据首席数据科学家,曾就职于知名搜索引擎公司6年,主要从事互联网文本挖掘工作的研发工作,目前专注的领域为大数据挖掘技术的工业应用研究和工程应用,曾获美国大学生数学建模竞赛二等奖一项,全国研究生数学建模竞赛二等奖一项,著有《大数据挖掘:系统方法与实例分析》

    全书内容分为三篇。第一篇为基础篇,主要介绍量化投资与数据挖掘的关系,以及数据挖掘的概念、实现过程、主要内容、主要工具等内容。第二篇为技术篇,系统介绍了数据挖掘的相关技术及这些技术在量化投资中的应用,主要包括数据的准备、数据的探索、关联规则方法、数据回归方法、分类方法、聚类方法、预测方法、诊断方法、时间序列方法、智能优化方法等内容。第三篇为实践篇,主要介绍数据挖掘技术在量化投资中的综合应用实例,包括统计套利策略的挖掘与优化、配对交易策略的挖掘与实现、数据挖掘在股票程序化交易中的综合应用,以及基于数据挖掘技术的量化交易系统的构建。本书的读者对象为从事投资、数据挖掘、数据分析、数据管理工作的专业人士;金融、经济、管理、统计等专业的教师和学生;希望学习MATLAB的广大科研人员、学者和工程技术人员。

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购