返回首页
苏宁会员
购物车 0
易付宝
手机苏宁

服务体验

店铺评分与同行业相比

用户评价:----

物流时效:----

售后服务:----

  • 服务承诺: 正品保障
  • 公司名称:
  • 所 在 地:

  • 工程塑性理论及其在金属成形中的应用(英文版) 王仲仁 胡卫龙 苑世剑 王小松 著 专业科技 文轩网
  • 新华书店正版
    • 作者: 王仲仁 胡卫龙 苑世剑 王小松著
    • 出版社: 其他
    • 出版时间:2018-12-01 00:00:00
    送至
  • 由""直接销售和发货,并提供售后服务
  • 加入购物车 购买电子书
    服务

    看了又看

    商品预定流程:

    查看大图
    /
    ×

    苏宁商家

    商家:
    文轩网图书旗舰店
    联系:
    • 商品

    • 服务

    • 物流

    搜索店内商品

    商品分类

         https://product.suning.com/0070067633/11555288247.html

     

    商品参数
    • 作者: 王仲仁 胡卫龙 苑世剑 王小松著
    • 出版社:其他
    • 出版时间:2018-12-01 00:00:00
    • 版次:1
    • 印次:1
    • 印刷时间:2018-12-14
    • 页数:344
    • 开本:16开
    • 装帧:平装
    • ISBN:9787040505870
    • 国别/地区:中国
    • 版权提供:其他

    工程塑性理论及其在金属成形中的应用(英文版)

    作  者:王仲仁 胡卫龙 苑世剑 王小松 著
    定  价:139
    出 版 社:3030-高等教育出版社
    出版日期:2018年12月01日
    页  数:344
    装  帧:精装
    ISBN:9787040505870
    主编推荐

    内容简介

    本书是抢先发售由有工程应用背景的教授与专家共同撰写的关于工程塑性理论及其在金属成形中的应用的专著。全书突出基本概念与应用,涵盖了作者们多年的研究成果。章重点介绍了几种屈服准则,包括作者提出的广义屈服准则,明确了应力偏张量与塑性变形的本质联系;第2章列出航天、航空及汽车领域新近研发的众多材料的单向拉伸力学特性;第3章介绍了验证屈服准则与塑性应力应变关系的薄管和薄板实验;第4章介绍了各向异性材料的屈服特性和静水应力与应力状态类型对屈服的影响;第5章介绍了塑性应变增量梯度理论的一般性定理及等效强化状态塑性变形中出现的“软化”现象;第6章介绍了后续塑性变形的几种强化特性;第7章阐述了由Levy-Mises应力应变关系增量理论导出的应力应变顺序对应规律及其实验验证;第8章给出了管材拉拔、缩口、扩口及锥面胀管等工序应力应变分析统一解;第9章为液压成形;0章为体积成形;1章为板料成形。本书不仅为读者提供null

    作者简介

    精彩内容

    目录
    Preface
    1 Fundamentals of Classical Plasticity
    1.1 Stress
    1.1.1 The Concept of Stress Components
    1.1.2 Description of the Stress State
    1.1.2.1 Stresses on an Arbitrary Inclined Plane
    1.1.2.2 Stress Components on an Oblique Plane
    1.1.2.3 Spe Stresses
    1.1.2.4 Common Stress States
    1.1.3 Stress Tensors and Deviatoric Stress Tensors
    1.1.4 Mohr Stress Circles
    1.1.4.1 Mohr Circles for a Two-DimensionaI Stress System
    1.1.4.2 Mohr Circles for a Three-Dimensional Stress System
    1.1.5 Equations of Force Equilibrium
    1.2 Strain
    1.2.1 Nominal Strain and True Strain
    1.2.2 Strain Components as Functions of Infinitesimal Displacements
    1.2.3 The Maximum Shear Strains and the Octahedral Strains
    1.2.4 Strain Rates and Strain Rate Tensors
    1.2.5 Incompressibility and Chief Deformation Types
    1.3 Yield Criteria
    1.3.1 The Concept of Yield Criterion
    1.3.2 Tresca Yield Criterion
    1.3.3 Mises Yield Criterion
    1.3.4 Twin Shear Stress Yield Criterion
    1.3.5 Yield Locus and Physical Concepts of Tresca, Mises, and Twin Shear Stress Yield Criteria
    1.3.5.1 Interpretation of Tresca Yield Criterion
    1.3.5.2 Interpretation of Twin Shear Stress Yield Criterion
    1.3.5.3 Interpretation of Mises Yield Criterion
    1.4 A General Yield Criterion
    1.4.1 Representation of GeneraI Yield Criterion
    1.4.2 Yield Surface and Physical Interpretation
    1.4.3 Simplified Yield Criterion
    1.5 Classical Theory about Plastic Stress-Strain Relation
    1.5.1 Early Perception of Plastic Stress Strain Relations
    1.5.2 Concept of the Gradient-Based Plasticity and Its Relation with Mises Yield Criterion
    1.5.2.1 Concept of the Plastic Potential
    1.5.2.2 Physical Interpretation of the Plastic Potential
    1.5.2.3 Physical Interpretation of Mises Yield Function (Plastic Potential)
    1.6 Effective Stress, Effective Strain, and Stress Type
    1.6.1 Effective Stress
    1.6.2 Effective Strain
    1.6.3 Stress Type
    References
    2 Experimental Research on Material Mechanical Properties under Uniaxial Tension
    2.1 Stress-Strain Relationship of Strain-Strengthened Materials under Uniaxial Tensile Stress State
    2.2 The Stress-Strain Relationship of the Strain-Rate-Hardened Materials in Uniaxial Tensile Tests
    2.3 Stress-Strain Relationship in Uniaxial Tension during Coexistence of Strain Strengthening and Strain Rate Hardening
    2.4 Bauschinger Effect
    2.5 Tensile Tests for Automotive Deep-Drawing Steels and High-Strength Steels
    2.5.1 Test Material and Experiment Scheme
    2.5.2 True Stress-Strain Curves in Uniaxial Tension
    2.5.3 Mechanical Property Parameters of Sheets
    2.5.3.1 Strain-HardeningExponent n
    2.5.3.2 Lankford Parameter R
    2.5.3.3 Plane Anisotropic Exponent AR
    2.5.3.4 Yield-to-Tensile Ratio σs/σb
    2.5.3.5 Uniform Elongation δm
    2.6 Tensile Tests on Mg-Alloys
    2.7 Tension Tests on Ti-Alloys
    2.7.1 Mechanical Properties of Ti-3AI-2.SV Ti-Alloy Tubes at High Temperatures
    2.7.2 Strain Hardening of Ti-3A1-2.5 V Ti-Alloy in Deformation at High
    Temperatures
    References
    3 Experimental Research on Mechanical Properties of Materials under Non-Uniaxial Loading Condition
    3.1 P-p Experimental Results of Thin-Walled Tubes
    3.1.1 Lode Experiment
    3.1.2 P-p Experiments on Thin-Walled Tubes Made of Superplastic Materials
    3.1.2.1 Experiment Materials and Specimens
    3.1.2.2 Loading Methods
    3.1.2.3 Experimental Results and Analysis
    3.1.3 Experiments on Tubes Subjected to Internal Pressure and Axial Compressive Forces
    3.1.3.1 Experimental Device
    3.1.3.2 Material Properties
    3.1.3.3 Experimental Results
    4 Yield Criteria of Different Materials
    5 Plastic Constitutive Relations of Materials
    6 Description of Material Hardenability with Different Models
    7 Sequential Correspondence Law between Stress and Strain Components and Its Application in Plastic Deformation Process
    8 Stress and Strain Analysis and Experimental Research on Typical Axisymmetric Plane Stress-Forming Process
    9 Shell and Tube Hydroforming
    10 Bulk Forming
    11 Sheet Forming
    Index

    售后保障

    最近浏览

    猜你喜欢

    该商品在当前城市正在进行 促销

    注:参加抢购将不再享受其他优惠活动

    x
    您已成功将商品加入收藏夹

    查看我的收藏夹

    确定

    非常抱歉,您前期未参加预订活动,
    无法支付尾款哦!

    关闭

    抱歉,您暂无任性付资格

    此时为正式期SUPER会员专享抢购期,普通会员暂不可抢购